

Denison Mines Inc. 1 Horne Walk, Suite 200 Elliot Lake, ON P5A 2A5 Canada

> Tel: 705 848-9191 Fax: 705 848-4445

www.denisonmines.com

March 27, 2025

Mr. Devon Brown Project Officer Canadian Nuclear Safety Commission Wastes and Decommissioning Division 280 Slater Street PO Box 1046. Station B Saskatoon, Saskatchewan K1P 5S9

Ms. Lori Jalak Ministry of the Environment, Conservation and Parks 70 Foster Drive, Suite 110 Sault Ste Marie, ON P6A 6V4

Dear Mr. Brown and Ms. Jalak:

RE: **Denison Mines Inc. 2024 Operating Care and Maintenance Annual Report**

Denison Mines Inc. is pleased to submit the Denison Mines Inc. Operating Care and Maintenance Annual Report for 2024. This document has been completed in accordance with: UMDL-Minemill-Denison.01/indf; and UMDL-Minemill-Stanrock.02/indf; and Certificate of Approval (C of A) No. 4-0067-74-766; C of A No. 4-0019-72-006; and C of A No. 4-034-76-006.

Yours truly,

Denison Mines Inc.

Kevin Himbeault

Vice President, Operations

Enclosure

2024 OPERATING CARE & MAINTENANCE ANNUAL REPORT Denison Mines Inc.

Submitted to the

Canadian Nuclear Safety Commission & Ministry of the Environment, Conservation and Parks

2025

Elliot Lake Joint Review Group for Denison Mines Closed Sites

Canadian Nuclear Safety Commission

Devon Brown

Project Officer Uranium Mines and Mills Division devon.brown@cnsc-ccsn.gc.ca Tel: 639-318-1991

cc: ron.stenson@canada.ca

cc: cnsc.ummd-dmucu.ccsn@canada.ca

Mailing address:

Canadian Nuclear Safety Commission 280 Slater Street, P.O. Box 1046, Station B

Ottawa, ON K1P 5S9

Environment and Climate Change Canada

Catalin Obreja

Physical Science Officer,

Environmental Stewardship Branch

catalin.obreja@canada.ca Tel: 416-739-5973

cc: duck.kim@canada.ca

Mailing address:

Environment Canada,

Environmental Protection Operations

4905 Dufferin Street, 2nd Floor, Office 2S316

Toronto, Ontario M3H 5T4

Ministry of Energy, Northern Development and Mines

Trina Rawn

Director of Mineral Development

trina.rawn@ontario.ca Tel: 1-807-456-3581

cc. Marc Stewart

Senior Manager, Mine Rehabilitation Section

marc.stewart@ontario.ca

Mailing address:

Ministry of Energy, Northern Development and Mines

435 James Street South, Suite B002

Thunder Bay, ON P7E 6S7

Ministry of Natural Resources and Forestry

Jim Trottier

Management Biologist, Blind River Field Office

jim.trottier@ontario.ca Tel: 705-356-3018

Mailing address:

Ministry of Natural Resources and Forestry

62 Queen Avenue, P.O. Box 190

Blind River, ON POR 1B0

Ministry of the Environment, Conservation and Parks

Lori Jalak

Senior Environmental Officer, Sault Ste Marie Area Office

lori.jalak@ontario.ca Tel: 705-257-6242

Mailing address:

Ministry of the Environment, Conservation and

Parks

70 Foster Drive, Suite 110 Sault Ste Marie, ON P6A 6V4

Ministry of Labour, Training and Skills Development

Alain Perreault

Northern Regional Mining Program Coordinator alain.perreault@ontario.ca Tel: 705-561-5019

<u>alain.perreault@ontario.ca</u>
Mailing address:

Ministry of Labour, Training and Skills Development

Ontario Government Bldg 301-159 Cedar Street,

Sudbury, ON P3E 6A5

Additional Distribution List 2024

705-844-2340

Elliot Lake Public Library City of Elliot Lake Mailing address: Rob deBortoli Elliot Lake Public Library City of Elliot Lake Interim CAO Pearson Plaza r.debortoli@city.elliotlake.on.ca Tel: 705-848-2287 40 Hillside Drive South Mailing address: Elliot Lake, ON P5A 1M7 City of Elliot Lake 45 Hillside Drive North Elliot Lake, ON P5A 1X5 **Serpent River First Nation Township of the North Shore** Chief Wilma-Lee Johnston Mayor Tony Moor Wilma-lee.johnston@serpentriverfn.com Tel: 705-844-2418 tmoor@townshipofthenorthshore.ca cc. Taylor Commanda Tel: 705-849-2213 lands.resources@serpentriverfn.com Mailing address: Mailing address: Township of the North Shore 1385 Hwy 17, P.O. Box 108 Serpent River First Nation 195 Village Road, P.O. Box 14 Algoma Mills, ON POR 1A0 Cutler, ON POP 1B0 **Town of Spanish Denison Mines Inc.** Pam Lortie **David Cates** CAO/Clerk-Treasurer dcates@denisonmines.com pamlortie@townofspanish.com Tel: 705-844-2300 Tel: 416-979-1991 Mailing address: Town of Spanish 8 Trunk Road, P.O. Box 70 Spanish, ON POP 2A0 North Shore Tribal Council (Mamaweswen) Allan Moffat, CEO allanm@mamaweswen.ca Michelle Martin, Financial Comptroller michelle@mamaweswen.ca Sonya Cloutier, Emergency Management Coordinator sonya@mamaweswen.ca Mailing address: Main Office 473 Hwy 17 W Cutler, ON P0P 1B0 1-877-633-7558 toll free

Table of Contents

1	Organ	izational Information	3
	1.1	Licencee	3
	1.2	Board of Directors	3
	1.3	List of Officers	3
2	Financ	cial Guarantees	3
3	Licenc	e and Monitoring Program Modifications	4
4	Metho	dology	5
	4.1 4.1.1 4.1.2 4.1.3	Health and Safety Health and Safety Injury Statistics Gamma Dosimetry Radon Progeny Monitoring	<u> </u>
	4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	Water Quality Monitoring Program TOMP, SAMP and SRWMP Program Requirements Data Quality Objectives Changes in Analytical Methods Data Screening and Assessment Conventions	
5	Result	s and Discussion	10
	5.1 5.1.1 5.1.2 5.1.3	Health and Safety Health and Safety Injury Statistics Gamma Dosimetry Radon Progeny Monitoring	1(1
	5.2 5.2.1 5.2.2 5.2.3	Water Quality Monitoring Program Surface Water Quality Groundwater Quality Porewater Quality	11 12 23
	5.3 5.3.1 5.3.2 5.3.3	Site Specific Maintenance and Operations Program Denison TMA-1 Denison Lower Williams Lake and TMA-2 Stanrock TMA	25 29
6	Refere	ences	36
L	ist of Tables	S	
Т	able 1.1	Denison Mines Inc. Directors as of December 31, 2024	3
Т	able 1.2	Denison Mines Inc. Officers as of December 31, 2024	3

Table 4.2.2	Water Quality Benchmarks for SRWMP and Data Quality Objectives for TOMP, SAMP and SRWMP	9
Table 5.1.1	Health & Safety Injury Statistics	0
Table 5.1.3.1	Denison TMA-1 ETP Radon Progeny Monitoring Results 2024 1	1
Table 5.1.3.2	Denison LWL ETP Radon Progeny Monitoring Results 2024 1	1
Table 5.1.3.3	Stanrock ETP Radon Progeny Monitoring Results 2024 1	1
Table 5.2.1 20	24 Surface Water Field Blank and Field Precision Data Summary 1	3
Table 5.2.1.1a	Annual Average Concentrations ETP Influent (D-1)1	4
Table 5.2.1.1b	Final Discharge at Stollery Settling Pond Outlet (D-2)1	5
Table 5.2.1.1.	1 2024 TMA-1 Compliance with Discharge Limits at Final Point of Contro (D-2)1	
Table 5.2.1.2a	Denison Lower Williams Lake ETP Influent (D-22)1	7
Table 5.2.1.2b	Lower Williams Final Discharge at Denison Access Road (D-3) 1	8
Table 5.2.1.2.	1 2024 Lower Williams Compliance with Discharge Limits at Final Point of Control (D-3)	
Table 5.2.1.3a	Stanrock Influent (DS-2)2	20
Table 5.2.1.3b	Orient Lake Outlet Stanrock Final Point of Control (DS-4)	21
Table 5.2.1.3.	1 2024 Stanrock TMA Compliance with Discharge Limits at Final Point of Control (DS-4)2	
Table 5.2.2 2	2024 Groundwater Field Blank and Field Precision Data Summary 2	23
Table 5.3.1.2.	1 2024 TMA-1 Effluent Treatment Plant Flow Rates, Operating Days, and Discharge Days2	28
Table 5.3.2.2.	1 2024 Lower Williams Lake ETP Flow Rates, Operating Days, and Discharge Days	31
Table 5.3.3.2.	1 2024 Stanrock ETP Flow Rates, Operating Days, and Discharge Days 3	35

Table of Appendices

APPENDIX I Summary of Cycle 5

APPENDIX II Site Maps, Sampling Requirements

APPENDIX III Flagged Data & QA/QC Results

APPENDIX IV Laboratory QA/QC Results

APPENDIX V Water Quality Results

1 Organizational Information

1.1 Licencee

DENISON MINES INC. 1100-40 University Avenue Toronto, Ontario M5G 1T1

1.2 Board of Directors

Table 1.1 contains the list of names and titles of the Directors of Denison Mines Inc. (Denison) as of December 31, 2024. All persons listed below may be contacted via the licensee address.

Table 1.1 Denison Mines Inc. Directors as of December 31, 2024

<u>Name</u>	<u>Office</u>
David Cates	Director, President and Chief Executive Officer
Amanda Willett	Director, Corporate Secretary

1.3 List of Officers

Table 1.2 contains the list of names and titles of the Officers of Denison as of December 31, 2024. All persons listed below may be contacted via the licensee address.

Table 1.2 Denison Mines Inc. Officers as of December 31, 2024

<u>Name</u>	<u>Office</u>
David Cates	Director, President and Chief Executive Officer
Elizabeth Sidle	Chief Financial Officer
Amanda Willett	Director, Corporate Secretary

2 FINANCIAL GUARANTEES

Federal and Provincial regulations which apply to the care and maintenance programs of Denison in Elliot Lake require mine operators to provide adequate and secure resources to meet current and future responsibilities with respect to mine closure and long-term care and maintenance.

All expenditures are funded through a reclamation trust fund. Denison currently maintains a balance in the trust equivalent to costs to maintain interim suspension status for the period of 2024 to 2029.

3 LICENCE AND MONITORING PROGRAM MODIFICATIONS

Denison closed mine sites in Elliot Lake are currently managed within the scope of work outlined within a licence regulated by the Federal Canadian Nuclear Safety Commission (CNSC). Currently Denison is the licencee for two Uranium Mine Decommissioning Licences:

- 1) Denison sites (Tailings Management Area (TMA)-1 and TMA-2) UMDL-Minemill-Denison.01/indf; and
- 2) Stanrock site UMDL-Minemill-Stanrock.02/indf

Compliance sample stations that require monitoring under the licences include:

- 1) Stollery Lake Settling Pond Outlet (D-2) for Denison TMA-1;
- 2) Lower Williams Lake (LWL) Settling Pond Outlet (D-3) for Denison TMA-2; and,
- 3) Orient Lake Polishing Pond Outlet (DS-4) for Stanrock TMA.

Provincially, Denison is the permittee for three Certificates of Approvals (C of A) regulated by the Ministry of Environment, Conservation and Parks (MECP):

- 1) Denison Site TMA-1: C of A No. 4-0019-72-006;
- 2) Denison Site TMA-2 (Lower Williams): C of A No. 4-034-76-006; and
- 3) Stanrock Site: C of A No. 4-0067-74-766

There were no changes to any of these documents in 2024. A proposed amendment of the C of A for TMA-1 remains in progress.

A State of the Environment (SOE) Report for the Serpent River Watershed has been jointly produced by Denison and Rio Algom Limited (RAL) every five years. The SOE report includes the monitoring programs for the Serpent River Watershed Monitoring Program (SRWMP), Source Area Monitoring Program (SAMP) and the Tailings Management Area (TMA) Operational Monitoring Program (TOMP). There were approved changes to the SAMP, TOMP and SRWMP in 2019 that included approval from Environment and Climate Change Canada (ECCC), CNSC, Ministry of Labour (MOL), Ministry of Natural Resources and Forestry (MNRF) and Ministry of Northern Development and Mines (MNDM) which were presented in the *Cycle 5 Study Design for the SRWMP, SAMP and TOMP* (Cycle 5 Design Study) (Minnow, 2019). A summary of Cycle 5 monitoring requirements is available in Appendix I. The Cycle 5 SOE Report was submitted to regulators in March 2021 (Minnow 2021).

The Cycle 6 Study Design was submitted to regulators in 2024, with implementation in 2025 (Minnow 2024). The Cycle 6 Study Design outlined that the SRWMP demonstrates improving water quality at all monitoring locations over the past 20 years. Based on environmental performance and continuing monitoring and annual reporting for the Serpent River watershed, the Canadian Nuclear Safety Commission (CNSC) and Ontario Ministry of Environment, Conservation, and Parks (MECP) agreed to transition SOE reporting to a 10-year reporting cycle (email D. Brown to H. Heffner, November 6, 2024). The modified schedule includes a Cycle 7 study design, inclusive of benthos/sediment monitoring and reporting requirements in 2029, and a combined Cycle 6/7 SOE Report in March 2030, beginning the 10-year reporting frequency.

4 METHODOLOGY

4.1 Health and Safety

4.1.1 Health and Safety Injury Statistics

Health and safety in the workplace continue to be of great importance to Denison. In 2024, monthly company-wide safety meetings and daily line-up safety meetings were completed. These meetings provide Denison personnel with information regarding safety awareness, updates to the safety program, and a forum to raise issues or concerns. Training for job responsibilities were tracked utilizing a training matrix to ensure comprehensive and timely qualifications for work. All field work is assessed for risk and documented through a Hazard Assessment identifying mitigations to identified hazards.

4.1.2 Gamma Dosimetry

Denison utilized Optically Stimulated Luminescence (OSL) dosimeters during Q1 and Q2 of 2024. Analysis of historical data indicated that worker exposure to gamma radiation has been insignificant and determined that the OSLD badges should be discontinued. The CNSC accepted this proposed change (e-mail Brown to Heisler, September 25, 2024) and workers are no longer classified as Nuclear Energy Workers (NEWs) and no longer participate in a gamma dosimetry program.

4.1.3 Radon Progeny Monitoring

Radon progeny monitoring at all Denison Effluent Treatment Plants (ETPs) is conducted on a quarterly basis, as part of the quarterly health and safety inspections. Radon results are reported in Working Level (WL) units.

Radon level is measured by calculating alpha radiation from radon decay products. The sample is first collected on membrane filters with an air-sampling pump by walking through the entire ETP over a 5-minute period, simulating a normal work routine. The ETP is ventilated as per routine work practice and according to signage on the building before the walkthrough. Alpha radiation is measured with an alpha counter between forty to ninety minutes after the sample has been collected. WL is then calculated based on the counts, count duration, sampling duration, sampling flow rate, decay factor, filter self-absorption value, background count, and efficiency factor.

The reportable action limit for radon exposure at all ETPs is 0.1 WL. To ensure radon levels stay below the reportable action limit, an internal investigation limit of 0.05 WL has been established to trigger a response whereby mitigating measures are implemented to ensure worker exposure to radon gas is reduced and controlled. Mitigating measures include, but are not limited to, the purchase of a ventilation fan and/or posting signage to instruct longer ventilation time before entering an enclosed ETP.

The radon data is used to calculate individual annual dose estimates for all workers.

4.2 Water Quality Monitoring Program

4.2.1 TOMP, SAMP and SRWMP

As part of the closure and decommissioning process, an integrated performance monitoring framework had been developed for Denison and RAL sites for water quality monitoring activities through three integrated programs: TOMP, SAMP and SRWMP. These programs have been described in the Cycle 5 Study Design (Minnow 2019).

4.2.2 TMA Operational Monitoring Program (TOMP)

The TOMP was designed to track the performance of the TMAs and generate data used to make management decisions to maintain performance compliance of the TMAs. The program included water quality monitoring within the TMA basins and groundwater quality, to reflect the operational and treatment performance. The data collected in the program is used as references for water quality trends for Serpent River Watershed receiving environment, however the water quality from Denison and Stanrock TMA sites must comply with the regulatory criteria for the effluents from the treatment plants specified in the licenses and Certificates of Approval (Sample points: D-2, D-3 and DS-4).

4.2.3 Source Area Monitoring Program (SAMP)

The SAMP was designed to monitor the nature and quantity of potential contaminants being discharged from the TMAs to the Serpent River Watershed. Some monitoring stations for the SAMP program were also the TOMP effluent stations, and requirements have been harmonized to serve both programs. The data collected in the program could be used as references for water quality trend and performance for the Serpent River Watershed receiving environment.

4.2.4 Serpent River Watershed Monitoring Program (SRWMP) State of the Environment Report (SOE)

The SRWMP SOE, most recently produced in 2021, was designed to provide an integrated monitoring approach to assess the cumulative effects and watershed-level changes over time, in order to evaluate the recovery of the receiving environment following the implementation of the decommissioning plans. The SRWMP SOE assessed water and sediment chemistry, as well as benthic invertebrate communities in downstream and reference lakes within the watershed. Water quality data collected in the program is compared to the benchmarks established for the SRWMP. The objectives of the SRWMP are:

- Evaluation of cumulative effects of mine discharges on the Serpent River Watershed,
- Evaluation of the effectiveness of mine decommissioning plans, and
- Assessment of long-term trends in environmental quality in the watershed.

An additional SRWMP Water Quality Report is prepared annually to review water quality downstream of the SAMP and TOMP and provides water quality data from watershed monitoring locations from January 1, 2024 through December 31, 2024. The objective of the SRWMP annual data review is to identify anomalous data and evaluate short-term data trends at key locations. Step changes and anomalies are identified in this report by reviewing and compiling the last five years of annual average data for all SRWMP monitoring locations and reviewing the information for any noticeable changes. The 2024 SRWMP report was prepared and submitted under a

separate cover (RAL, Denison, 2025). Results are not presented in this annual report, but the report is recommended to be read in conjunction with the Denison 2024 Annual OCM report.

4.2.5 Program Requirements

Water quality monitoring requirements and criteria as per the licences were fulfilled through the approved TOMP, SAMP and SRWMP. The water quality monitoring locations in this report made up part of the Serpent River Watershed (SRW), which as outlined above, is a shared watershed with RAL sites and their monitoring locations.

The 2024 TOMP and SAMP followed program requirements specific to the following: sampling locations, frequencies, parameters, and analytical protocols. These requirements have been recommended and approved in the Cycle 5 Study Design. Appendix II in this report provides maps of the sampling stations of the water quality program. Tables in Appendix II provide a brief description of each location, the sampling frequency, and parameters monitored, as required by TOMP and SAMP as well as the C of As and decommissioning licenses as identified in Section 3.

4.2.6 Data Quality Objectives

Targeted Detection Limits (TDL) and Data Quality Objectives (DQOs) for TOMP and SAMP requirements are provided in Table 4.2.2 which were derived from the Cycle 5 Study Design. Laboratory data quality assessment is provided in Appendix IV of this report.

4.2.7 Changes in Analytical Methods

There were no changes to analytical methods in 2024. In October 2024, Denison switched to Testmark Laboratories, but analytical methods remained the same. Method detection limits for uranium and sulphate were higher than SAMP and TOMP DQO. Denison is working with Testmark to lower these detection limits.

4.2.8 Data Screening and Assessment Conventions

Data validation was conducted on TOMP and SAMP water quality data throughout the year. The data validation assessment screening process within the electronic database flagged all data points entered or imported that had values outside a rolling minimum 12 value mean \pm 3 standard deviations. Prior to being accepted in the database, all flagged data was reviewed and validated through a quality assurance process.

As part of the TOMP, field quality assurance and quality control sampling were extended to the groundwater monitoring program in 2006. Data quality assessment involved monthly screening of field duplicate and field blank sample data against TOMP and SAMP DQOs found in Table 4.2.2. Detailed surface water and groundwater quality assurance and quality control (QA/QC) results are included in Appendix III of this report.

Laboratory analyses were contracted to Canadian Association of Laboratory Accreditation (CALA) certified laboratories. Laboratory QA/QC reports are provided in Appendix IV of this report.

Monthly data validation of flagged data for 2024 can be found in Appendix III.

Annual water quality reporting was designed to be concise and focused on the presentation of data in a standardized format with limited interpretation. Detailed statistical evaluation of water quality trends are included in the Serpent River Watershed Cycle 5 (2015-2019) State of the

Environment Report (SOE) with some updated trends presented in the Cycle 6 Study Design. Data validation, as documented in Data Validation Procedures, ensured prompt response to upset conditions or unusual results. Appendix V includes all 2024 monthly average year to date (YTD) results and detailed raw data water quality monitoring results for surface water results and five years of groundwater quality results.

Surface water stations within the TMAs, as well as effluent, seepages, and downstream surface water stations were compared to SRWMP benchmarks for receiving water quality. Mine sources (i.e. TOMP and SAMP stations) were not expected to achieve the benchmarks that were set for the receiving environment, but these comparisons were made to identify potential variables or sources of concern relative to the downstream receiving environment. Therefore, water quality data in this report is compared to benchmarks established for the SRWMP. These benchmarks were based on water quality criteria for the protection of aquatic life or the upper range of background concentrations (except for pH for which the lower background range was relevant). The most recent federal and provincial (Ontario) guideline was used to determine these benchmarks (or British Columbia Ministry of Environment (BCMOE) water quality guidelines were applied if none existed). A dose-base site-specific benchmark for radium-226 was also developed, as per CNSC request (Minnow, 2019 Appendix C). In this report, benchmarks are presented in Table 4.2.2.

Annual loadings from the TMA final discharge were calculated using monthly monitoring results (volume and average concentration) aligning with the Metal and Diamond Mining Effluent Regulations (MDMER) loadings methodology. Daily flow at the ETP was used to calculate monthly discharge volumes (Litres), except in the case of Williams Lake where flow is measured weekly at the final discharge. Monthly average concentrations were multiplied by monthly volumes to produce monthly loads, and monthly loads were summed to estimate annual loadings. Annual loadings at the final discharge point were calculated for radium-226 (Million Becquerels) and TSS (kilograms per year) for each effluent treatment plant and presented in Appendix V.

Table 4.2.2 Water Quality Benchmarks for SRWMP and Data Quality Objectives for TOMP, SAMP and SRWMP

		Assessment Criteria ¹	Data Quality Objectives ²										
Parameter	Units	Receiving Environment Criteria	Targeted Detection Limit	Minimum Detectable Difference	Field Blank Criteria	Laboratory Blank Criteria	Field Precision	Laboratory Precision	Laboratory Spikes	Laboratory Accuracy (CRM) ^b			
Field Parameters		1	1	I.	I	1		1	·				
Conductivity	μs/cm	-	0.1	0.05	-	-	10%	-	-	-			
Flow	L/s	-	method ^a	method a	-	-	30%	-	-	-			
рН	pH units		0.1	0.01 or 0.02	-	-	10%	-	-	-			
Lake		6.5											
Wetland/Stream		5.3											
Laboratory Param	eters			•					•				
Acidity	mg/L	-	1.0	-	2.0	2.0	20%	10%	-	-			
Barium	mg/L	1	0.005	-	0.01	0.01	20%	10%	20%	20%			
Cobalt	mg/L	0.0025	0.0005	-	0.001	0.001	20%	10%	20%	20%			
Iron	mg/L			-	0.04	0.04	20%	10%	20%	20%			
Lake		0.755	0.02										
Wetland/Stream		2.49	0.02										
Manganese 3	mg/L	0.841	0.002	-	0.004	0.004	20%	10%	20%	20%			
Radium	Bq/L	0.469	0.005	-	0.01	0.01	20%	10%	20%	-			
Sulphate 3	mg/L	128-429	0.1	-	0.2	0.2	20%	10%	20%	20%			
TSS	mg/L	-	1.0	-	2.0	2.0	20%	10%	-	-			
Uranium	mg/L	0.015	0.0005	-	0.001	0.001	20%	10%	20%	20%			

Notes:

^{1.} Assessment criteria as per Table S.1, Appendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021)

^{2.} Table 6.2 Cycle 5 Study Design for the SRWMP, SAMP and TOMP (Minnow, 2019)

^{3.} Sulphate and manganese criteria taken from Table S.2, Appendix S, Cycle 5 State of the Environment Report for the SRWMP, SAMP and TOMP (Minnow, 2021). Paramenters are hardness dependent.

a. Reporting Limit varies by method

b. CRM (Certified Reference Material)

5 RESULTS AND DISCUSSION

5.1 Health and Safety

5.1.1 Health and Safety Injury Statistics

In 2024, health and safety related training and education continued to be an integral part of monthly safety meetings and daily line-ups for all personnel working at the Denison Elliot Lake Operations. All personnel continued to hold the following certifications and/or had completed the following training: Workplace Hazardous Materials Information System (WHMIS), Cardiopulmonary Resuscitation (CPR) and First Aid certification, as well as the Annual Radiation Safety training. Many workers also completed additional training and certifications to ensure their qualifications for specialty or specific tasks and jobs related to care and maintenance activities were current. There were no medical aid or lost time accidents reported in 2024 for employees at the Elliot Lake sites (Table 5.1.1). Additionally, no medical aids or lost time accidents were reported for contractors on site in 2024.

Table 5.1.1 Health & Safety Injury Statistics

Category	2	2024	2	023	2022		
	Number	Frequency	Number	Frequency	Number	Frequency	
Medical Aid	0	0.0	1	5.04	1	4.92	
Lost Time	0	0.0	0	0.0	0	0.0	
Total	0	0.0	1	5.04	1	4.92	
Person-Hours Worked - Denison Employees	1:	3204	39	9484	40682		

Frequency is Calculated as: Number/Person-hours worked *200,000.

5.1.2 Gamma Dosimetry

Gamma radiation is no longer an area of concern given many years of monitoring utilizing personal dosimeter devices supplied by an approved dosimetry service.

5.1.3 Radon Progeny Monitoring

There were no radon progeny action level exceedances in 2024. The action level criteria are specific to the Elliot Lake area as indicated in the Control Limit Registry companion document. Working Levels (WLs) of radon progeny continued to test at levels far below the action level criteria of 0.10 WL for Denison TMA-1 ETP (Table 5.1.3.1), Denison LWL ETP (TMA-2) (Table 5.1.3.2) and for Stanrock ETP (Table 5.1.3.3). Quarterly values for individual ETPs are provided in their respective tables.

Table 5.1.3.1 Denison TMA-1 ETP Radon Progeny Monitoring Results 2024

Quarter	Radon (WL)
1	0.0009
2	0.0105
3	0.0005
4	0.0029

Table 5.1.3.2 Denison LWL ETP Radon Progeny Monitoring Results 2024

Quarter	Radon (WL)
1	0.0110
2	0.0282
3	0.0070
4	0.0131

Table 5.1.3.3 Stanrock ETP Radon Progeny Monitoring Results 2024

Quarter	Radon (WL)
1	0.0197
2	0.0073
3	0.0011
4	0.0156

5.2 Water Quality Monitoring Program

The objective of the annual water quality data review was to identify atypical data and to provide evaluation and short-term annual averages at select locations. Changes and anomalies were identified by reviewing and compiling the last five years of annual average data for all TOMP and SAMP locations. Unusual results were routinely investigated in accordance with the *Water Quality Assessment and Response Plan*, which is included in Appendix A of the most recent SOE Report (Minnow, 2021).

5.2.1 Surface Water Quality

Appendix III contains detailed QA/QC results compared against DQOs while Appendix IV contains surface water station-specific data including annual statistics and comparisons to SRWMP assessment criteria for the receiving environment (4.2.2).

There were six field blank DQO exceedances in 2024 (Table 5.2.1). Parameters with field blank exceedances included acidity (2), sulphate (3), and iron (1). The sulphate exceedances are explained by a higher MDL utilized after the laboratory change, as all 3 exceedances occurred after the laboratory change. The results received were <0.05 mg/L whereas DQO for sulphate is 0.02 mg/L. The iron sample result was 0.05 mg/L compared to the DQO of 0.04 mg/L and the acidity samples were 3 and 9 mg/L, exceeding the DQO of 2 mg/L. The 2024 DQO exceedances were few and minor. Parameter concentrations are all typically higher than field blank DQOs at the sample location and therefore, the exceedances did not impact surface water quality result interpretation. Field sampling procedures will be reviewed to determine if changes should be made as part of the annual review and update of the QMS.

There were 12 out of 128 field precision exceedance results which did not meet DQOs in 2024 (Table 5.2.1).

The radium-226 field precision DQO of 20% was exceeded in 6 out of 12 samples with a maximum result of 139% in August. The August radium-226 result is more similar to a field blank (<0.005) and there may have been an error in sample labelling or bottle analysis at the laboratory. With the exception of the August result, the exceedances remained consistent with the variability observed in low radium-226 concentrations and did not affect the interpretation of radium-226 water quality results. Results were within values typically observed at this location (D-2).

Iron, cobalt, and manganese field precision exceeded the DQO of 20%; 1 in 12 samples for iron, 3 in 12 samples for cobalt, and 2 of 12 samples for manganese. Precision exceedances for cobalt were at values near the detection limit and uncertainty at these levels is high. Precision exceedance for iron in August of 174%, and relatively high variance for other parameters suggests a bottle labelling or sampling issue in that month. Concentrations of parameters were within values typically observed at these locations (D-2 and DS-2) and the annual precision averages met the DQO criteria for acidity, hardness, TSS, sulphate, uranium, barium, cobalt, iron and manganese (Table 5.2.1).

Table 5.2.1 2024 Surface Water Field Blank and Field Precision Data Summary

	рН	Acidity	TSS	Hardness	SO4	Ra(T)	U	Ва	Со	Fe	Mn
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	Bq/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Field Blank Statistics											
Count	16	4	12	12	12	12	12	12	12	12	12
Average	5.7	6	0.9	0.1	0.3	0.006	0.0003	0	0	0.01	0.000
Max	7.2	9	1	0.3	0.5	0.007	0.001	0.001	0.0001	0.05	0.001
Min	4.5	2	0.7	0.1	0.2	0.005	0.0000	0.000	0.0000	0.01	0.000
Field Blank Exceedances											
DQO Criteria 1		2.0	2.0	1.0	0.2	0.01	0.001	0.01	0.001	0.04	0.004
# Exceedances	0	2	0	0	3	0	0	0	0	1	0
Field Duplicate Statistics											
Count	16	4	12	12	12	12	12	12	12	12	12
Average	1%	1%	3%	2%	3%	37%	2%	3%	13%	19%	10%
Max	4%	2%	40%	5%	12%	139%	5%	8%	67%	174%	57%
Min	0%	0%	0%	0%	0%	8%	0%	1%	0%	0%	0%
Field Precision Exceedances											
DQO Criteria 1	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
# Exceedances	0	0	0	0	0	6	0	0	3	1	2

¹ SAMP and TOMP field blank criteria taken from Table 6.2 of the Cycle 5 Study Design for SRWMP, SAMP and TOMP (Minnow, 2019)

5.2.1.1 DensionTMA-1

Site-specific water quality monitoring at the Denison TMA-1 facility was completed in accordance with TOMP and SAMP design requirements. Water quality data from all the sites of the monitoring programs were compared to SRWMP benchmarks (Table 4.2.2) to demonstrate changing water quality, identify potential variables or sources of concern relative to the downstream receiving environment as well as to monitor compliance discharge criteria as it relates to treatment performance. Mine sources (effluent and seepage) were not expected to meet receiving water benchmarks. Detailed water quality results are provided in Appendix V.

Performance of TMA-1 was monitored at the ETP influent station D-1 as part of the TOMP program (Table 5.2.1.1a). Acidity and cobalt levels were consistent over the past five years, whereas pH had remained consistent at near neutral to slightly alkaline between 2020 and 2023; 2024 saw a slight increase in pH to 8.1 as compared to 7.4 the year prior. Acidity and cobalt remained below their respective Targeted Detection Limits (TDL) (Table 5.2.1.1a). Most metal concentrations over the last five years remained below SRWMP benchmarks (Table 4.2.2). 2023 uranium concentrations were slightly higher than the previous four years but were back within historical range for 2024. Sulphate concentrations have been declining as predicted in the 1995 Environmental Impact Statement (DML 1995) with the values generally stable to declining over the past four years. Annual average radium-226 levels have remained stable over the 5-year reporting period. The current barium chloride treatment for radium-226 removal remains adequate to maintain radium-226 control downstream in the final discharge at D-2 (Table 5.2.1.1b). Denison continues to evaluate the understanding of radium-226 in the TMA and downstream and is examining the potential for improved treatment efficiencies. The results of this additional work will be provided under separate cover in 2025.

Table 5.2.1.1a Annual Average Concentrations ETP Influent (D-1)

PARAMETER	Flow (L/s)	ACID mg/L	Hardness mg/L	pН	SO4 mg/L	Ra Bq/L	Ba mg/L	Co mg/L	Fe mg/L	Mn mg/L	U mg/L
2020	81.45	<1	108.7	7.5	57.4	1.715	0.094	<0.0005	0.08	0.028	0.0097
2021	29.85	<1	99.3	7.6	52.2	1.511	0.101	< 0.0005	0.07	0.022	0.0075
2022	19.13	<1	98.5	7.6	43.0	1.584	0.063	< 0.0005	0.09	0.030	0.0077
2023	23.86	<1	116.1	7.4	57.9	1.745	0.082	< 0.0005	0.06	0.012	0.0116
2024	17.11	<2	85.3	8.1	39.1	1.595	0.106	0.0001	0.07	0.011	0.0076
Annual Summary Statistics											
Average	34.28	<1	101.6	7.6	49.9	1.630	0.089	<0.0005	0.07	0.021	0.0088
Maximum	81.45	<2	116.1	8.1	57.9	1.745	0.106	<0.0005	0.09	0.030	0.0116
Minimum	17.11	<1	85.3	7.4	39.1	1.511	0.063	0.0001	0.06	0.011	0.0075

Note: Five year annual average, maximum and minimum statistics

Note: Five-year annual average, maximum and minimum statistics

The final point of control at the TMA-1 facility was monitored at the Stollery Settling Pond Outlet (station D-2). Review of the annual average concentrations for TOMP and SAMP parameters for the last five years indicated consistently low TSS levels, stable radium-226 concentrations and near neutral pH values; with all compliance parameters meeting their grab sample and monthly mean discharge limits (Table 5.2.1.1.b). A lower annual average for radium-226 is observed in 2024 compared to 2023 and could be attributed to less water moving through the ETP (fewer

operating days), as well as increased efficiency of barium chloride addition. In addition, with the exception of uranium, all parameters remained below the SRWMP benchmarks (4.2.2) and cobalt remained close to the MDL. Annual average barium concentrations decreased in 2024 compared to the past 4 years. The lower barium concentrations can be attributed to the decreased flow through the treatment plant, and therefore decreased barium chloride addition to the treated water system (Table 5.3.1.2.1). The 2024 barium chloride annual consumption was 6,910 kilograms (kg) compared to 8,659 kg used in 2023 (Table 5.3.1.2.1). Uranium concentrations were elevated compared to influent concentrations due to contribution from dam seepage but are generally stable and are not increasing further downstream (e.g., SRWMP locations). Sulphate concentrations are elevated compared to influent water quality concentrations, but this is reflective of the seepage water from the Dam 10 toe drains, high in sulphate, that discharges into Stollery Settling Pond. (Table 5.2.1.1a). Annual loadings of the compliance parameters radium-226 and TSS are provided in Appendix V.

Table 5.2.1.1b Final Discharge at Stollery Settling Pond Outlet (D-2)

PARAMETER UNITS	Flow (L/s)	Hardness mg/L	рН	SO4 mg/L	TSS mg/L	Ra Bq/L	Ba mg/L	Co mg/L	Fe mg/L	Mn mg/L	U mg/L
2020	81.69	214.8	7.2	151.3	1	0.163	0.481	0.0006	0.29	0.170	0.0264
2021	39.19	237.4	7.2	163.3	1	0.115	0.284	0.0005	0.28	0.148	0.0281
2022	41.17	259.8	7.2	200.3	1	0.120	0.272	0.0005	0.35	0.170	0.0326
2023	53.42	260.8	7.2	171.4	1	0.109	0.416	0.0004	0.42	0.142	0.0321
2024	37.75	285.9	7.1	240.1	1	0.058	0.202	0.0004	0.41	0.132	0.0338
Annual Summary Statistics											
Average	50.64	251.7	7.2	185.3	1	0.113	0.331	0.0005	0.35	0.152	0.0306
Maximum	81.69	285.9	7.2	240.1	1	0.163	0.481	0.0006	0.42	0.170	0.0338
Minimum	37.75	214.8	7.1	151.3	1	0.058	0.202	0.0004	0.28	0.132	0.0264

Note: Five year annual average, maximum and minimum statistics

Note: Five-year annual average, maximum and minimum statistics

Toxicity was monitored for Denison TMA-1 at the final discharge station D-2 (Stollery Settling Pond Outlet) to estimate the potential effect that the effluent might have on aquatic biota. Toxicity sampling was completed semi-annually in 2024 as per SAMP requirements and included the following tests: acute *Daphnia magna* and rainbow trout toxicity tests and sub lethal *Ceriodaphnia dubia* toxicity test. In 2024, no mortality was observed in the acute lethality tests. *Ceriodaphnia dubia* IC₂₅ reproduction results were 3% effluent in the June sampling event and >100% effluent in October (Appendix V). A comparison of the water quality between the June and October tests and historical data does not identify a potential cause for the differences between the test results as most parameters of concern were higher in October compared to June. The D-2 discharge remains not acutely lethal with variability in sublethal toxicity test results. Results will continue to be monitored.

In 2024, TMA-1 effluent quality at the final point of control, D-2, was in compliance with the discharge limits established in the decommissioning licence (Table 5.2.1.1.1).

Table 5.2.1.1.1 2024 TMA-1 Compliance with Discharge Limits at Final Point of Control (D-2)

Month			Number of Times Discharge Limits Were Exceeded													
Month	Samples Required	ŗ	pH bH units		TSS mg/L		Ra(T) Bq/L									
	Required	Grab Sample Limit ¹ :	Monthly Arithmetic Mean ¹ :	Grab Sample Limit1:	Monthly Arithmetic Mean ¹ :	Grab Sample Limit ¹ :	Monthly Arithmetic Mean ¹ :									
		Upper 9.5 Lower 5.5	Upper 9.5 Lower 6.5	Upper 50 Lower N/A	Upper 25 Lower N/A	Upper 1.11 Lower N/A	Upper 0.37 Lower N/A									
Jan.	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1									
Feb.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
Mar.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
Apr.	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1									
May	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
June	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
July	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1									
Aug.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
Sept.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
Oct.	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1									
Nov.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
Dec.	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1									
YTD	53	0 of 53	0 of 12	0 of 53	0 of 12	0 of 53	0 of 12									

¹Limits established in the Licence UMDL-MINEMILL-DENISON.01/indf issued December 15, 2004.

5.2.1.2 Denison Lower Williams Lake (TMA-2)

Site-specific water quality monitoring at the Denison LWL ETP was completed in accordance with TOMP and SAMP requirements. Detailed monthly average results are provided in Appendix IV.

LWL Influent station (D-22) is used to monitor seepage from Dam 1 and is located in a natural wetland area. Review of annual average concentrations for TOMP parameters at this station indicates variability for some parameters. Water quality at D-22 shows near neutral pH values (Table 5.2.1.2a), that are within the SRWMP benchmark pH limits. Uranium, barium, and cobalt annual concentrations have been generally stable over the past four to five years, and all remained below SRWMP benchmarks (Table 5.2.1.2a and Table 4.2.2). Radium-226 concentrations demonstrate variability over the 5-year period with 2024 representing a below average Ra-226 concentration. The 2024 annual radium-226 concentration in the influent (D-22) remains below the criteria applied to the final point of discharge (D-3). Denison will continue to monitor this trend and if it continues, treatment for radium-226 removal may not be necessary. Sulphate concentrations at D-22 are similar to 2022 and are higher compared to 2020 to 2021 values but are still within historical ranges and are well below the 50 and 100 years post decommissioning porewater concentration predictions (1,600 mg/L sulphate) made in the 1995 EA (Denison 1995). Iron, manganese and uranium annual concentrations are lower this year compared to the past four years.

Table 5.2.1.2a Denison Lower Williams Lake ETP Influent (D-22)

PARAMETER UNITS	рН	SO4 mg/L	Ra Bq/L	Ba mg/L	Co mg/L	Fe mg/L	Mn mg/L	U mg/L
2020	6.8	40.5	0.319	0.045	0.0009	7.68	1.265	0.0019
2021	6.8	67.0	0.436	0.067	0.0010	6.78	0.733	0.0011
2022	6.7	129.0	0.689	0.057	0.0008	7.68	0.924	0.0017
2023	6.7	125.0	0.262	0.046	0.0012	5.74	1.154	0.0013
2024	6.6	124.3	0.369	0.038	0.0009	1.87	0.468	0.0005
Annual Summary State	istics							
Average	6.7	97.2	0.415	0.051	0.0010	5.95	0.909	0.0013
Maximum	6.8	129.0	0.689	0.067	0.0012	7.68	1.265	0.0019
Minimum	6.6	40.5	0.262	0.038	0.0008	1.87	0.468	0.0005

Note: Five year annual average, maximum and minimum statistics

The final discharge from LWL is monitored near the Denison Access Road at Station D-3. Review of annual average concentrations for TOMP and SAMP demonstrate stable pH values and consistently low TSS concentrations (Table 5.2.1.2b). Similar to the influent, the annual average D-3 radium-226 concentration has been stable since 2022, and continues to remain well below discharge criteria. Sulphate concentrations had been increasing between 2020 and 2022, but have been on the decline since 2022 and are in line with the 5-year average (Table 5.2.1.2b).

Radium-226 concentrations remain well below the grab sample (1.1 Bq/L) and monthly mean (0.37 Bq/L) discharge limits. Beaver activity at the inlet and outlet of the settling pond are suspected to play a role in some elevated radium values at D-3 (Appendix V), but these values remained well within compliance limits. Annual average barium concentrations have followed the

same trend over the last five years and can be attributed to the barium chloride addition used for radium-226 removal upstream in the D-22 influent.

Uranium concentrations at D-3 are higher than the influent uranium concentrations at D-22 (Table 5.2.1.2a) however, this is likely attributed to a 1959 operational spill that impacted Lower Williams Lake (DML 1995).

Uranium concentrations at D-3 have remained stable and are below the Canadian water quality guideline for protection of aquatic life (0.0150 mg/L) (CCME, 2020) as well as the guideline for Canadian drinking water quality (0.02 mg/L; Health Canada 2019). Despite some variability, all parameter annual average concentrations consistently met downstream receiving environment water quality criteria (Table 4.2.2).

Table 5.2.1.2b Lower Williams Final Discharge at Denison Access Road (D-3)

PARAMETER UNITS	Flow (L/s)	Hardness mg/L	рН	SO4 mg/L	TSS mg/L	Ra Bq/L	Ba mg/L	Co mg/L	Fe mg/L	Mn mg/L	U mg/L
2020	10.67	83.5	7.1	45.3	1	0.175	0.391	0.0005	0.25	0.047	0.0029
2021	4.72	101.2	7.1	56.6	1	0.221	0.388	0.0005	0.21	0.040	0.0033
2022	6.02	133.6	7.0	85.0	1	0.154	0.348	0.0005	0.13	0.040	0.0076
2023	6.9	118.4	7.1	79.6	1	0.103	0.316	0.0004	0.11	0.019	0.0063
2024	10.7	105.6	7.1	66.2	1	0.144	0.384	0.0003	0.25	0.053	0.0060
Annual Summary Statist	ics										
Average	7.80	108.5	7.1	66.5	1	0.159	0.365	0.0004	0.19	0.040	0.0052
Maximum	10.70	133.6	7.1	85.0	1	0.221	0.391	0.0005	0.25	0.053	0.0076
Minimum	4.72	83.5	7.0	45.3	1	0.103	0.316	0.0003	0.11	0.019	0.0029

Note: Five year annual average, maximum and minimum statistics

In 2024, LWL effluent quality at the final point of control, D-3, was in compliance with the discharge limits established in the decommissioning licence (Table 5.2.1.2.1).

Table 5.2.1.2.1 2024 Lower Williams Compliance with Discharge Limits at Final Point of Control (D-3)

Month Jan. Feb. Mar.				Number of Times Dis	charge Limits Were Exceed	ded			
N.4	Samples		pH		TSS	Ra(T)			
Month	Required	***************************************	oH units	0 1 0 1 11 11	mg/L	0 1 0 1 11 11	Bq/L		
		Grab Sample Limit*: Upper 9.5 Lower 5.5	Monthly Arithmetic Mean ¹ : Upper 9.5 Lower 6.5	Upper 50 Lower N/A	Monthly Arithmetic Mean ¹ : Upper 25 Lower N/A	Grab Sample Limit ¹ : Upper 1.11 Lower N/A	Monthly Arithmetic Mean ¹ : Upper 0.37 Lower N/A		
Jan.	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1		
Feb.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1		
Mar.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1		
Apr.	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1		
May	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1		
June	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1		
July	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1		
Aug.	0			Zer	o Discharge				
Sept.	0			Zer	o Discharge				
Oct.	1	0 of 1	0 of 1	0 of 1	0 of 1	0 of 1	0 of 1		
Nov.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1		
Dec.	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1		
YTD	41	0 of 41	0 of 10	0 of 41	0 of 10	0 of 41	0 of 10		

¹Limits established in the Licence UMDL-MINEMILL-DENISON.01/indf issued December 15, 2004.

5.2.1.3 Stanrock ETP

Discharge, runoff, and seepage from the Stanrock TMA collects into a small holding pond where the ETP influent station is monitored. Samples were analysed within the holding pond prior to treatment (DS-2) to closely monitor and make treatment adjustments as required to ensure compliant water quality at the final discharge station (DS-4).

A five-year review of the annual averages at DS-2 confirms this station to have a low pH with a high acid concentration. The annual average concentrations for most parameters at DS-2 appeared to be relatively stable with some small variability or increases in metal concentrations between 2020 and 2023. Radium-226 decreased slightly over the previous four years, with the lowest annual average of the past five years measured in 2023, however concentrations increased in 2024. Acidity, sulphate, cobalt, iron and uranium concentrations also increased in 2024 and could be attributed to lowering the ETP holding pond for maintenance in the summer of 2024 (Table 5.2.1.3a). These increases at DS-2 did not influence downstream concentrations (Table 5.2.1.3b). Annual averages of radium-226 continue to remain below SRWMP benchmarks (Table 5.2.1.3a). Flows at DS-2 continue to be low due to lower precipitation in the area but are higher compared to the past 3 years due to extra days of treatment for maintenance activities. Detailed results for 2024 are provided in Appendix V of this report and previous results are provided in their respective Annual OCM Reports (Denison, 2019-2023).

Table 5.2.1.3a Stanrock Influent (DS-2)

PARAMETER UNITS	Flow (L/s)	ACID mg/L	рН	SO4 mg/L	Ra Bq/L	Ba mg/L	Co mg/L	Fe mg/L	Mn mg/L	U mg/L
2020	65.76	171	3.1	437.5	0.273	0.019	0.0598	28.38	1.067	0.0150
2021	32.09	175	2.9	467.5	0.265	0.017	0.0551	26.65	1.362	0.0120
2022	27.36	160	2.9	457.5	0.242	0.018	0.0411	24.70	1.410	0.0098
2023	31.75	177	2.8	483.3	0.194	0.027	0.0538	28.67	1.438	0.0149
2024	36.1	212	2.8	505.8	0.378	0.019	0.0956	35.83	1.390	0.0448
Annual Summary Sta	tistics									
Average	38.61	179	2.9	470.3	0.270	0.020	0.0611	28.85	1.333	0.0193
Maximum	65.76	212	3.1	505.8	0.378	0.027	0.0956	35.83	1.438	0.0448
Minimum	27.36	160	2.8	437.5	0.194	0.017	0.0411	24.70	1.067	0.0098

Note: Five-year annual average, maximum and minimum statistics

Water quality at the Stanrock Final Point of Control is monitored at Orient Lake Outlet (DS-4). A review of water quality data at DS-4 for the last five years indicated generally stable pH values and TSS levels, that consistently met the discharge limits set out in the licence (Table 5.2.1.3.b). All metal concentrations consistently met receiving environment benchmarks for SRWMP (Table 4.2.2). Radium-226 annual averages continued to remain well below the monthly mean discharge criteria of 0.37 Bq/L and below the grab sample limit of 1.1 Bq/L as set out in the decommissioning licence. Annual radium-226 concentrations have remained generally stable and well below discharge limits. Annual average barium concentrations show little variability over the last five years and are very low.

Table 5.2.1.3b Orient Lake Outlet Stanrock Final Point of Control (DS-4)

PARAMETER	Flow	Hardness	рН	SO4	TSS	Ra	Ва	Co "	Fe "	Mn "	U "
UNITS	(L/s)			mg/L	mg/L	Bq/L	mg/L	mg/L	mg/L	mg/L	mg/L
2020	43.42	279.6	7.0	224.2	1	0.086	0.067	0.0005	0.13	0.040	0.0038
2021	20.42	245.7	7.1	222.5	1	0.128	0.077	< 0.0005	0.09	0.032	0.0050
2022	22.96	283.3	7.2	236.7	1	0.112	0.059	0.0006	0.11	0.047	0.0064
2023	30.77	311.5	7.2	260.8	1	0.094	0.050	0.0004	0.12	0.047	0.0093
2024	32.06	293.3	7.3	262.3	1	0.115	0.044	0.0003	0.02	0.044	0.0072
Annual Summary Statisti	cs										
Average	29.93	282.7	7.2	241.3	1	0.107	0.059	0.0005	0.09	0.042	0.0063
Maximum	43.42	311.5	7.3	262.3	1	0.128	0.077	0.0006	0.13	0.047	0.0093
Minimum	20.42	245.7	7.0	222.5	1	0.086	0.044	0.0003	0.02	0.032	0.0038

Note: Five year annual average, maximum and minimum statistics

Note: Five-year annual average, maximum and minimum statistics

Toxicity was monitored for the Stanrock site at the final discharge (DS-4) as per SAMP requirements. In 2024, toxicity testing was done in the spring and fall and included the same tests that were completed for the Denison TMA-1 final effluent (D-2). The June and September *Daphnia magna* and rainbow trout acute lethality tests resulted in 0% mortality. The June and September IC₂₅ *Ceriodaphnia dubia* reproduction test results were 100% and 58% effluent, respectively, indicating some variability and potential sub-lethal issues with reproduction in the fall test. All parameter concentrations in the sample effluent were within typical values for DS-4 and below aquatic toxicity benchmarks; and controls at the laboratory were satisfactory indicating a valid test. The final discharge continues to be not acutely toxic and sublethal toxicity at DS-4 will continue to be monitored in 2025. In 2024, Stanrock TMA effluent quality at the final point of control (DS-4), met the discharge criteria established in the decommissioning licence (Table 5.2.1.3.1).

Table 5.2.1.3.1 2024 Stanrock TMA Compliance with Discharge Limits at Final Point of Control (DS-4)

Month			Number of Times Discharge Limits Were Exceeded													
	Samples		рН		TSS	Ra(T)										
Month	Required		pH units		mg/L		Bq/L									
	rtequired	Grab Sample Limit1:	Monthly Arithmetic Mean ¹ :	Grab Sample Limit1:	Monthly Arithmetic Mean ¹ :	Grab Sample Limit1:	Monthly Arithmetic Mean ¹ :									
		Upper 9.5 Lower 5.5	Upper 9.5 Lower 6.5	Upper 50 Lower N/A	Upper 25 Lower N/A	Upper 1.11 Lower N/A	Upper 0.37 Lower N/A									
Jan.	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1									
Feb.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
Mar.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
Apr.	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1									
May	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
June	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
July	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1									
Aug.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
Sept.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
Oct.	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1									
Nov.	4	0 of 4	0 of 1	0 of 4	0 of 1	0 of 4	0 of 1									
Dec.	5	0 of 5	0 of 1	0 of 5	0 of 1	0 of 5	0 of 1									
YTD	53	0 of 53	0 of 12	0 of 53	0 of 12	0 of 53	0 of 12									

 $^{^{1}}$ Limits established in the Licence UMDL-Minemill-Stanrock.02/indf issued September, 2010.

5.2.1.3.1 Unnamed Pond Adjacent to Stanrock Mine Site

In 2024, Denison further investigated the depressed pH levels in the unnamed pond adjacent to the Stanrock site. Investigations suggested the potential for some TMA diversion water to be migrating toward the ponded area due to drainage impedance through a diversion channel. Modifications were made to the diversion channel to improve flow in 2024. The influence of this alteration on the ponded water area will be further evaluated in 2025.

An update on unnamed pond water quality along with other investigation results will be provided under separate cover in 2025.

5.2.2 Groundwater Quality

Detailed groundwater QA/QC results against DQOs are included in Appendix III and groundwater station-specific five-year annual data are included in Appendix V. The 2024 groundwater field blank and field precision data summary is presented in Table 5.2.2.

The field precision DQO of 20% for pH, acidity, sulphate and iron was not exceeded in 2024 (Table 5.2.2).

The iron field blank DQO criteria of 0.04 mg/L was exceeded in 2 of 3 samples at <0.07 mg/L and 0.19 mg/L. However, the iron concentration at this location, 98-15A, is much higher (>1,000 mg/L) and therefore this does not impact interpretation of groundwater quality results at this location. The result of 0.19 mg/L was unable to be reanalysed but was a result of sample contamination by laboratory analysis carryover. The sulphate field blank DQO was met in 3 of 3 samples while the acidity field blank DQO was exceeded in 3 of 3 samples. This may indicate contamination of field or laboratory equipment and/or lack of adequate rinsing of field or laboratory equipment. Sampling procedures will be reviewed, updated if warranted, and implemented before the 2025 sampling campaign.

Table 5.2.2 2024 Groundwater Field Blank and Field Precision Data Summary

		рН	SO ₄	Acidity	Fe
		pH units	mg/L	mg/L	mg/L
Field Blank Statistics					
	Count	3	3	3	3
	Average	6.7	<0.2	11.7	0.09
	Min	6.2	<0.2	4	0.01
	Max	7.2	<0.2	21	0.19
Field Blank Exceedances					
	DQO Criteria ¹	-	0.2	2	0.04
	# Exceedances	0	0	3	2
Field Precision Statistics					
	Count	3	3	2	3
	Average	1%	4%	1%	1%
	Min	0%	0%	0%	1%
	Max	2%	12%	2%	1%
Field Precision Exceedances					
	DQO Criteria ¹	20%	20%	20%	20%
	# Exceedances	0	0	0	0

¹Field criteria taken from Table 6.2 of the Cycle 5 Study Design for SRWMP, SAMP and TOMP (Minnow Environmental Inc., 2019) Bold indicates an exceedance of the criteria

5.2.2.1 Denison TMA-1 Groundwater Results

Sampling attempts were unsuccessful from the nested monitoring stations BH91 D1A and BH91 D1B, at the east end of TMA-1, downstream of Dam 17 on the North Abutment, in 2024 (Appendix V). Samples were not able to be collected at these stations in 2021, 2022 and 2023 therefore, the lack of sample collection in 2024 is not unexpected. Alternative methods to sample this location will be investigated in 2025.

Groundwater quality downstream of Dam 17 in the North Valley (BH91 D3A and BH91 D3B) could be characterized by having stable pH values with relatively high acidity, iron, and sulphate concentrations. BH91 D3A pH remains neutral and is back within historical range at 6.5 after a slight increase in 2023. Concentrations of most measured parameters at these stations were slightly variable over the past five years. Although acidity and iron showed a marked decline at BH91 D3A in 2022 at 48 mg/L and 88.6 mg/L, respectively, these concentrations returned to trend in 2023. In 2024 there was a slight decrease in acidity, and a slight increase in iron compared to 2023. Similarly, iron concentrations decreased to a lesser degree at BH91 D3B to 126 mg/L in 2022 and came back up to 146 mg/L in 2023. Acidity at both stations is trending lower over the past 5 years (Appendix V).

Downstream of Dam 10 (BH91 DG4B) groundwater was characterized by near neutral pH, variable sulphate concentrations, and historically low acidity over the past five years (Appendix V). Iron concentrations continue to be low compared to other wells. Sulphate concentration increased in 2020 but has been slowly declining, with a more marked drop between 2022 and 2023, 700 mg/L to 560 mg/L, respectively (Appendix V). 2024 values for both sulphate and iron continue to decrease.

5.2.2.2 Denison Lower Williams Lake

A review of the last five years of groundwater monitoring results downstream of Dam 1 on the North Ridge (BH91 D9A) indicated relatively stable and near neutral pH levels. Acidity concentrations have generally decreased over the past five years, with a slight increase in 2023, coming back down in 2024 (Appendix V). Sulphate concentrations are similar to other GW stations and are trending slightly lower over the last five years. Iron concentrations saw a slight decline in 2022 and continue to stay lower compared to the two years prior (Appendix V).

5.2.2.3 Stanrock

Groundwater quality was measured at Stanrock downstream of the following dams: Dam A (BH91 SG1A), Dam B (BH98-16A), and Dam C (BH98-15A). Wells BH91 SG3 and BH91 SG3B under Dam D have not produced enough water to sample in the last 5 years.

Dam A groundwater was characterized by low pH levels with consistently elevated sulphate, acidity, and iron concentrations (Appendix V). Iron concentrations had been decreasing steadily over the past five years but came up to 859 mg/L compared to 635 mg/L in 2023. pH and sulphate values saw a decline in 2023 compared to the three years previous but have come back up to historical range in 2024 (Appendix V). Acidity results for BH91 SG1A were not reportable due to analytical error.

Dam B groundwater quality also has a low pH and elevated sulphate, acidity and iron concentrations (Appendix V). Iron and sulphate concentrations are relatively stable with a

slight decrease for all in 2023 and within historical values in 2024 (Appendix V). Acidity results were not reportable due to analytical error.

Groundwater quality monitored downstream of Dam C at BH98 15A indicates depressed pH with consistently high acidity, sulphate and iron, (Appendix V). Acidity, sulphate and iron were all trending slightly lower over the past 5 years with the exception of a slight increase in 2022.

5.2.3 Porewater Quality

TMA porewater quality at the Stanrock site was monitored upstream of Dam A at the following stations: ST3, which includes four nested wells: ST3 P3 (total depth = 5.94 m), ST3 P5 (total depth = 2.64 m), ST3 P6 (total depth = 11.58 m), and ST3 P8 (total depth = 20.91m), and nested wells upstream of Dam D at BH91 SG2A (total depth = 33.31 m), BH91 SG2D (total depth = 4.39 m).

Assessment of the porewater quality data at the above mentioned ST3 stations show low pH levels with the lowest value observed at surface (2.64 m), ranging from 3.3 to 3.5, with high acidity, sulphate, and iron concentrations in all wells (Appendix V). There was not enough sample volume in the ST3 P5 well to measure acidity and iron, but a sulphate sample was collected. Concentrations of acidity, iron, and sulphate were highest in the deeper wells (i.e. ST3 P6 and ST3 P8), with lower concentrations in the shallower wells (ST3 P3 and ST3 P5).

Samples could not be collected at the monitoring well located in the tailings behind Dam D (BH91 SG2D) over the last five years due to no recharge of the well, however samples were collected at BH91 SG2A. Porewater quality results obtained at this station were consistent over the last five years, with elevated concentrations of iron, acidity and sulphate; acidity and iron saw a slight increase in 2023 and iron again in 2024. Acidity results were not reported due to analytical error. This is very similar to all other monitoring stations at Stanrock (Appendix V). It was predicted that porewater quality at the Stanrock site would improve over time but would require treatment for acidity control until year 50 post decommissioning (Denison 1995). Porewater pH and sulphate levels are in line with 10-year post decommissioning values at some locations and depths indicating a longer than initially anticipated transition decommissioning phase for porewater recovery.

5.3 Site Specific Maintenance and Operations Program

Site-specific program reports are provided in the following sections in accordance with the TOMP and SAMP Annual Reporting Requirements. Each section provides the following information:

- Summary of Tailings Management Area (TMA) Maintenance
- Summary of Effluent Treatment Plant (ETP) Operations

5.3.1 Denison TMA-1

5.3.1.1 TMA Maintenance

Routine facility, shaft cap, culvert and sign inspections, preventative maintenance were performed at the Denison TMA-1 as required. All routine seasonal maintenance items were completed including but not limited to: applying herbicide on all dams and roads to control vegetation, grading site roads to prevent erosion, snow removal and sanding as required, brushing sampling locations and flushing dam instrumentation wells. Proper calibrations of monitoring equipment were conducted on a consistent basis and recorded accordingly. A dam

safety inspection with the Engineer of Record (WSP) was performed for all dams/berms on the Denison site; the resulting report will be submitted under separate cover. In addition to the annual dam safety inspection, a 10-year Dam Safety Review by a third-party engineering firm was also conducted in 2024; the resulting report will also be submitted to regulators under separate cover. Both reports conclude that dams at both facilities are operated and maintained in accordance with appropriate practices and meet safety requirements of current guidelines. All maintenance was completed to ensure continued efficiency and safe operations.

Some non-routine maintenance activities for Denison TMA-1 site completed in 2024 are as follows:

- There was a focus on site clean-up in 2024.
 - A new laydown area was identified on site and all old piping laying around site was stockpiled in this location.
 - The floors inside the Effluent Treatment Plant were cleaned and painted.
- Re-keyed all site gate and plant locks to ensure security.
- Effluent Treatment Plant work:
 - Repaired siphon line flanges at ETP.
 - o Cleaned the intakes on all siphon lines to be ready for freshet.
 - Lengthened pipe on barium addition point to middle of mixing cell to ensure better mixing of reagent with the effluent water.
 - Replaced shingles that had blown from roof in a windstorm.
 - Washed and cleaned out barium tanks.
 - Replaced faulty pump actuator on barium dosage pump and prepared a hot spare on site in case of future failures.
 - Replaced broken intrusion alarm contact.
 - Installed Starlink as part of a project to improve SCADA communications.
- Excavated and evaluated a small sinkhole discovered approximately 10 m beyond the downstream toe of Dam 10. Details and findings were reported to Denison's Engineer of Record. No risk was identified, and the hole was backfilled to grade.
- Repaired and reinforced beaver deceiver fencing around culverts under Dam 10 access road for the outlet of Little Cinder Lake.
- Brushed out ditch along road to #2 Shaft to assist drainage and protect road from erosion.
- Boulders were installed on a small road to Denison Falls to deter public vehicle access.
- Repaired back road to the Mill Gate. Road had partially washed out due to heavy rains.

- A longer chain was installed, and a redundant latch was removed from the Mill Gate to eliminate a pinch point.
- Shortened standpipes on several monitoring wells that were preventing lids from being secured.

5.3.1.2 ETP Operations

The ETP located at the Denison TMA-1 spillway (D-1) operated for 87 days in 2024 (Table 5.3.1.2.1). The ETP treated approximately 551,000,000 L of water, with a monthly average daily plant flow of 73 L/s. A total of 6,910 kg of barium chloride was used for radium-226 removal, less than the approximately 8,600 kg used in 2023. Sodium hydroxide (NaOH) was not utilized for pH neutralization in 2024 because the TMA-1 influent is already neutral to slightly alkaline, ranging from 7.4 to 9.1 and therefore does not impact pH downstream at the final discharge at D-2 (Table 5.3.1.2.1). An estimated 1,180,000,000 L was discharged from the final point of control at the Stollery Lake Settling Pond Outlet (D-2). Although the ETP only operated for 87 days, discharge at D-2 occurred for 366 days in 2024 (Table 5.3.1.2.1). Annual monthly average daily discharge flow was 37 L/s.

5.3.1.2.1 Operating Summary

In 2024, the TMA-1 ETP operated consistently for 82 days from March to May when it was shut down on May 24. The ETP resumed operation from October 28 to November 1 for an internal study on radium removal. Results of the study will be provided under separate cover in 2025. Various siphon pipelines were used to draw from TMA-1 to maintain a controlled release of water. Lower than normal precipitation, especially snow in 2024, ultimately resulted in the low number of operational days for the ETP.

Table 5.3.1.2.1 2024 TMA-1 Effluent Treatment Plant Flow Rates, Operating Days, and Discharge Days

													Y.T.D.	Y.T.D.
ITEM	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC	2024	2023
PLANT OPERATIONS														
Operating Days	0	0	28	30	24	0	0	0	0	4	1	0	87	130
Maximum Daily Plant Flow (L/s D-1)	0	0	89	120	119	0	0	0	0	29	29	0	120	83
Minimum Daily Plant Flow (L/s @ D-1)	0	0	29	88	32	0	0	0	0	26	29	0	0	0
Monthly Average Daily Plant Flow (L/s @ D-1)	0	0	46	105	76	0	0	0	0	27	29	0	73	68
Total Volume Treated (ML)	0	0	110	273	157	0	0	0	0	9	3	0	551	759
Barium Chloride Consumption														
total kg/month	0	0	1396	3426	1932	0	0	0	0	127	29	0	6910	8659
monthly average mg/litre	0.00	0.00	12.65	12.57	12.34	0.00	0.00	0.00	0.00	13.45	11.52	0.00	12.53	11.41
Caustic Soda Consumption														
total kg/month	0	0	0	0	0	0	0	0	0	0	0	0	0	0
monthly average mg/litre	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EFFLUENT														
Discharge Days	31	29	31	30	31	30	31	31	30	31	30	31	366	365
Maximum Daily Discharge Flow (L/s D-2)	29	39	86	196	137	29	21	17	13	14	34	41	196	321
Minimum Daily Discharge Flow (L/s D-2)	17	17	55	94	21	10	13	10	13	10	21	17	10	4
Monthly Average Daily Discharge Flow (L/s D-2)	22	27	71	140	66	17	19	13	13	11	24	27	37	47
Total Volume Discharged (ML)	58	69	189	363	175	43	50	35	34	29	63	71	1180	1482

5.3.2 Denison Lower Williams Lake and TMA-2

5.3.2.1 TMA Maintenance

Routine facility, shaft cap, culvert and sign inspections, preventative maintenance were performed at the Denison TMA-2 and the Lower Williams Lake site as required. All routine seasonal maintenance items were completed including but not limited to: applying herbicide on all dams and roads to control vegetation, grading site roads to prevent erosion, snow removal and sanding as required, brushing sampling locations and flushing of select dam instrumentation wells. Proper calibrations of monitoring equipment were conducted on a consistent basis and recorded accordingly. The annual dam safety inspection and 10-year dam safety review noted in Section 5.3.1.1 included inspection of dams and berms at TMA-2 and Lower Williams Lake. All maintenance was completed to ensure continued efficiency and safe operations on site.

Some non-routine maintenance activities for Denison TMA-2 and the Lower Williams Lake site completed in 2024 are as follows:

- Re-keyed all site gate and plant locks to ensure security.
- Effluent Treatment Plant work:
 - Repaired and replaced soffit damaged during a windstorm,
 - Clean and paint floor,
 - Replaced valve on barium drip system to give finer adjustment of reagent addition,
 - o Emptied and cleaned out settled barium reagent tank,
 - o Raised barium tank off floor to increase availability of reagent in the tank,
 - Repair flapper on barium day tank, flapper manually controls level in tank.
- Installed pond-leveler style beaver deceiver at Williams Lake Outlet (D-3A) to alleviate repeated manual clearing of beaver debris at this particular location. The deceiver appears to be function well with ongoing modifications and maintenance performed as needed.

5.3.2.2 Summary of ETP Operations

The ETP located at the Denison Lower Williams Lake station (D-22) operated for 359 days in 2024 (Table 5.3.2.2.1). The ETP treated approximately 374,000,000 L of water, with a monthly average final discharge flow of 14 L/s. The total amount of barium chloride that was used for radium-226 removal was 2,391 kg, slightly higher than 2023 usage. Although annual radium-226 concentrations had indicated a gradually increasing trend between 2019 and 2021, concentrations were decreasing between 2021 and 2023, then rose slightly in 2024. Radium-226 concentrations are still well below discharge limits at D-3 (Table 5.2.1.2.b). Influent (D-22) radium-226 concentrations in 2024 were just below discharge criteria (0.37 Bg/L monthly mean). An

estimated 335,000,000 L was discharged from the final point of control (D-3) and took place over 275 days of 2024. Annual monthly average daily discharge flow was 14 L/s (Table 5.3.2.2.1).

5.3.2.2.1 Operating Summary

In 2024, the Denison Lower Williams Lake ETP operated every month with a brief break in September. Periodic operation of the ETP was a result of warmer and drier than normal conditions in 2024. Treatment conditions at LWL were for the sole purpose of controlling radium-226 levels in the effluent which are well below the discharge criteria, with 2024 influent concentrations at the discharge criteria level. Neutralization treatment has not been required at this site since 2002.

Table 5.3.2.2.1 2024 Lower Williams Lake ETP Flow Rates, Operating Days, and Discharge Days

													Y.T.D.	Y.T.D.
ITEM	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC	2024	2023
PLANT OPERATIONS														
Operating Days	31	29	31	30	31	30	31	31	23	31	30	31	359	312
Maximum Daily Plant Flow (L/s @ D-3)	5	7	136	100	35	8	7	0	0	15	17	31	136	79
Minimum Daily Plant Flow (L/s @ D-3)	4	3	12	4	2	1	2	0	0	15	7	5	0	0
Monthly Average Daily Plant Flow (L/s @ D-3)	4	5	46	29	11	3	4	0	0	15	10	14	12	8
Total Volume Treated (ML)	12	11	123	75	30	7	11	0	0	40	27	37	374	224
Barium Chloride Consumption														
total kg/month	206	193	206	200	206	200	206	206	153	206	200	206	2391	2024
monthly average mg/litre	17.52	17.13	1.68	2.66	6.85	28.03	18.14	0.00	0.00	5.14	7.52	5.59	6	9
Caustic Soda Consumption														
total kg/month	0	0	0	0	0	0	0	0	0	0	0	0	0	0
monthly average mg/litre	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EFFLUENT														
Discharge Days	31	29	31	30	31	30	31	0	0	1	30	31	275	251
Maximum Discharge Flow (L/s @ D-3)	5	7	136	100	35	8	7	0	0	15	17	31	136	79
Minimum Discharge Flow (L/s @ D-3)	4	3	12	4	2	1	2	0	0	15	7	5	0	0
Monthly Average Discharge Flow (L/s @ D-3)	4	5	46	29	11	3	4	0	0	15	10	14	14	10
Total Volume Discharged (ML)	12	11	123	75	30	7	11	0	0	1	27	37	335	218

5.3.3 Stanrock TMA

5.3.3.1 TMA Maintenance

Routine facility, shaft cap, culvert and sign inspections, preventative maintenance were performed at the Denison Stanrock TMA site as required. All routine seasonal maintenance items were completed including but not limited to: applying herbicide on all dams and roads to control vegetation, grading site roads to prevent erosion, snow removal and sanding as required, brushing sampling locations and flushing dam instrumentation wells. Proper calibrations of monitoring equipment were conducted on a consistent basis and recorded accordingly. The annual dam safety inspection and 10-year dam safety review noted in Section 5.3.1.1 included inspection of dams and berms at the Stanrock TMA. All maintenance was completed to ensure continued efficiency and safe operations on site.

Some non-routine maintenance activities for Denison Stanrock TMA site completed in 2024 are as follows:

- There was a focus on site clean-up in 2024.
 - A new laydown area was identified on site and all old piping laying around site was stockpiled in this location.
 - Removed collapsed plywood bridge downstream of DS-4.
 - The floors inside the ETP and both pumphouses were cleaned and painted.

ETP work:

- Oil leak in mixing cell 1 and lime tank agitators fixed, and oil level in mixing cell 2 agitator verified,
- A new pH transmitter and probe were installed in the ETP bypass creek to allow a pH measurement in the event of a ETP bypass due to high flows,
- Replaced a faulty electric motor on Lime Pump #1.
- Replaced worn out packing in Lime Pump #2.
- Replaced an isolation valve on Lime Pump #2 that was leaking.
- Removed old pneumatic backup lime addition valve and installed a new electric lime addition valve.
- Replaced faulty electrical outlet in ETP.
- Lime and barium tanks emptied and cleaned out.
- Replaced gasket on manhole door to lime tank that was damaged during door removal for clean out.
- Brought the holding pond level down to facilitate an intake pipe inspection from the pond to the first mixing cell and from the second mixing cell to the

- discharge. Videos were taken and evaluated. All piping was found to be in satisfactory condition
- Replaced weather stripping on bottom of garage door at Stanrock ETP to stop heat from escaping and to keep rodents from entering.
- Repaired an old pipe hole in the floor grating identified during a safety audit.
- Replaced pH probe and transmitter in the ETP with one that allowed for temperature compensation.
- Fabricated an "air agitator" that could be inserted into mixing chambers or reagent tanks to be used with the compressor to agitate in the event of an agitator failure.

Dam M and G work:

- Replaced failed pump #4 at Dam G, its corresponding electrical starter, overload block and fuses. All fusing for all pumps at Dam M and G verified to be correct type and size.
- Patched hole in Dam M storage shed and installed new lock.
- o Removed remnants of steel butterfly valve from Dam G discharge line.
- Replaced Wi-Fi radios between Dam M and Dam G pumphouses to restore communications for SCADA.
- o Repaired wooden trestle for Dam G pump discharge lines.
- Replaced failed pump #2 at Dam G.
- Replaced failed pump #4 at Dam G a second time.

TMA work:

- Re-keyed all site gate and plant locks to ensure security.
- Installed culverts on swale behind Dam B to eliminate driving trucks through tailings seepage water.
- Road maintenance between Dam G and Beaver Lake turnoff. Installed riprap drainage where culverts were not possible, added rip rap to sides of roadwork performed in 2023 to eliminate erosion.
- Replaced missing CNSC License sign on Dam A Gate.
- Repaired siphon line at head pond.
- Fabricated and installed new groundwater well casings that had disintegrated (Wells 98-16A and 98-15A).
- Shortened standpipes on several monitoring wells that were preventing lids from closing and subsequently locking.
- Installed boulders to prevent ATV trespassing on site (near Canmet gate).

- Drilled drain hole in Moose Lake Gate pipe post to prevent water from collecting and rusting.
- Work on Dam A ditch to improve water flow to collection system and ETP treatment
 - Rip rap banks installed to narrow collection ditch which will increase flow velocity preventing build up. Banks also allow future access to better maintain them
 - Culverts and ditches cleaned re-establishing water collection. Water is now collected from wetland as intended
- Install Starlink internet at ETP and Dam M as part of a project to improve SCADA communications.

5.3.3.2 Summary of ETP Operations

The Stanrock ETP operated periodically throughout the year for the purpose of pH neutralization and radium-226 removal. The ETP, which was monitored at station DS-2, operated a total of 132 days, with an average monthly daily plant flow of 101 L/s. Throughout 2024, an estimated 1,157,000,000 L of water were treated with barium chloride for radium-226 removal and lime addition for neutralization. In 2024, 741 kg of barium chloride and 157.69 dry tonnes of lime were used at the Stanrock ETP. In total, 999,000,000 L were discharged from the final point of control (DS-4), over a total of 366 days. Monthly average daily discharge flow at DS-4 was 32 L/s for 2024 (Table 5.3.3.2.1).

5.3.3.2.1 Operating Summary

The Stanrock ETP operated as required throughout the year to maintain discharge compliance and control of the Holding Pond water levels. Operating days within each month ranged from 2 to 26 days, operating in ten months of the reporting year. Most of the operating days were during November, early winter and early spring as rainfall and runoff conditions were most often present during these times of the year (Table 5.3.3.2.1). No water entered the Moose Lake Settling Pond from Beaver Lake, and caustic soda was not dispensed into Orient Creek in 2024.

Table 5.3.3.2.1 2024 Stanrock ETP Flow Rates, Operating Days, and Discharge Days

ІТЕМ	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC	Y.T.D. 2024	Y.T.D. 2023
PLANT OPERATIONS														
Operating Days	12	4	25	26	16	0	8	12	2	0	13	14	132	107
Maximum Daily Plant Flow (L/s @ DS-2)	125	123	140	145	147	0	138	96	15	0	125	127	147	157
Minimum Daily Plant Flow (L/s @ DS-2)	85	103	77	74	94	0	106	15	10	0	82	85	0	0
Monthly Average Daily Plant Flow (L/s @ DS-2)	101	112	109	105	121	0	124	41	13	0	98	112	101	111
Total Volume Treated (ML)	105	39	236	236	167	0	86	42	2	0	110	135	1157	1024
Barium Chloride Consumption														
total kg/month	83	21	259	157	77	0	10	24	3	0	54	51	741	912
monthly average mg/litre	0.79	0.54	1.10	0.67	0.46	0.00	0.12	0.58	1.55	0.00	0.49	0.38	0.64	0.89
Lime Consumption														
total dry tonnes/month	11.23	3.69	33.61	32.12	27.65	0.00	11.81	4.81	0.55	0.00	16.99	15.23	157.69	106.58
monthly average g/litre	0.11	0.10	0.14	0.14	0.17	0.00	0.14	0.11	0.25	0.00	0.15	0.11	0.14	0.10
NEUTRALIZATION														
Lime Consumption														
Beaver Lake total dry tonnes/month	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Site total including ETP Operations	11.23	3.69	33.61	32.12	27.65	0.00	11.81	4.81	0.55	0.00	16.99	15.23	157.69	106.6
EFFLUENT														
Discharge Days	31	29	31	30	31	30	31	31	30	31	30	31	366	365
Maximum Daily Discharge Flow (L/s @ DS-4)	35	13	254	197	67	9	9	3	13	6	25	153	254	323
Minimum Daily Discharge Flow (L/s @ DS-4)	13	6	48	54	5	3	1	1	1	1	9	13	1	1
Monthly Average Daily Discharge Flow (L/s @ DS-4)	21	9	127	100	27	5	5	3	4	3	15	59	32	31
Total Volume Discharged (ML)	57	21	341	260	71	14	13	7	10	9	39	157	999	981

5.4 Summary

All Denison Elliot Lake sites were operated in compliance with regulatory requirements and current guidelines with no significant exceedances or concerns of note.

6 REFERENCES

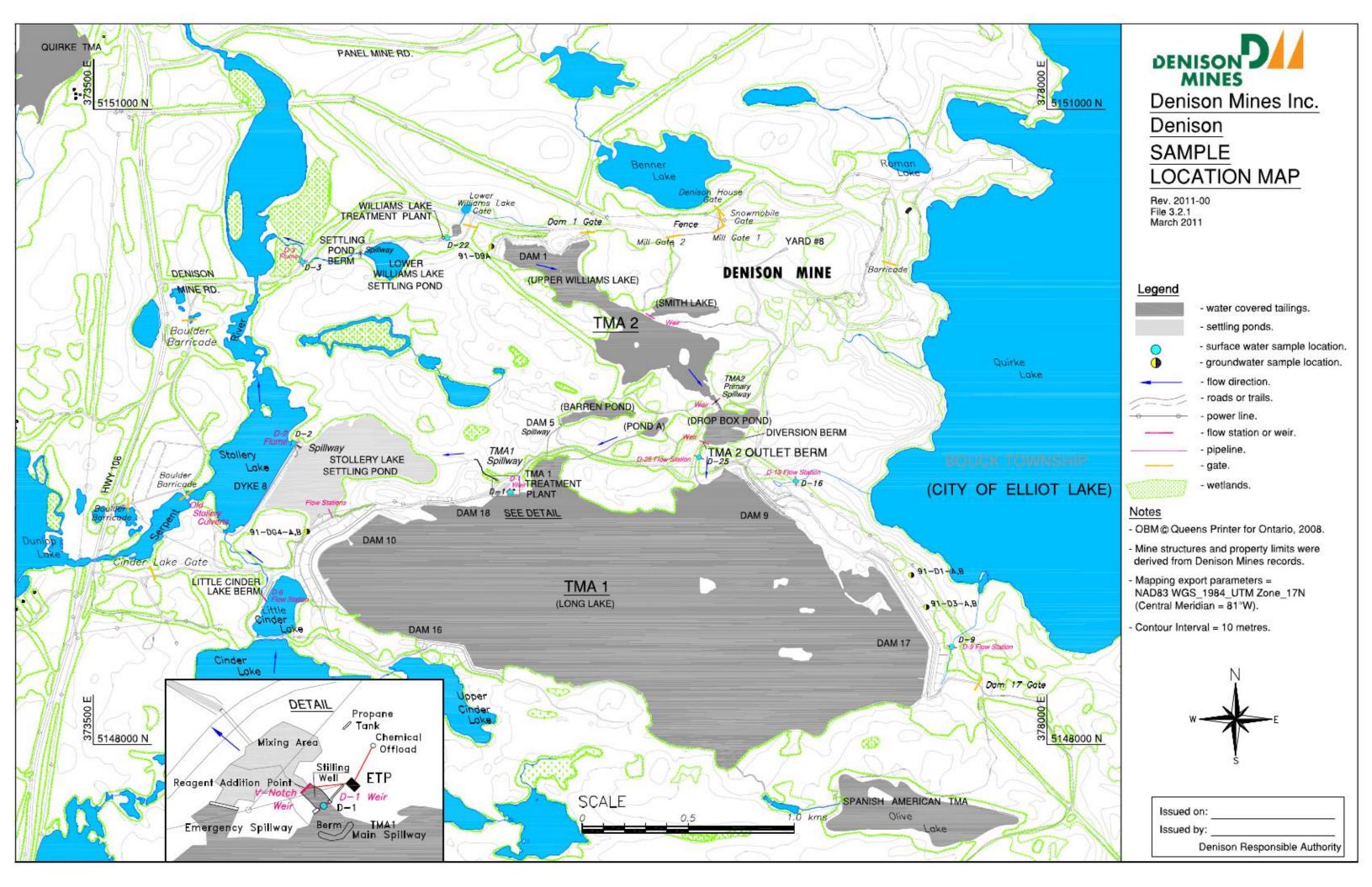
- Minnow Environmental Inc. and Beak International Incorporated, 2001. Serpent River Watershed Monitoring Program 1999 Study. April 2001.
- Minnow Environmental Inc., 2019. The Cycle 5 Study Design for the SRWMP, SAMP and TOMP.

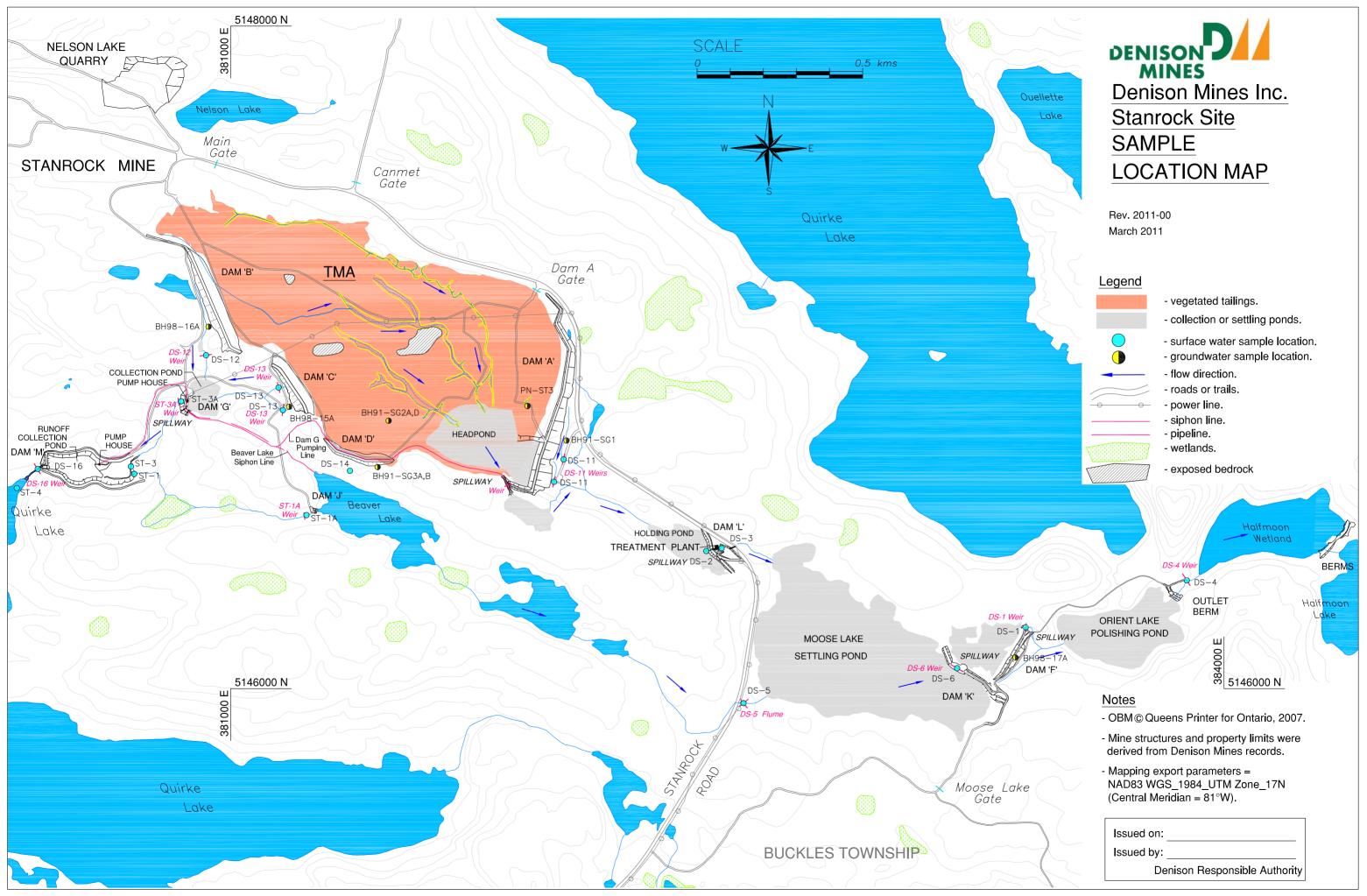
 Prepared for Rio Algom Limited and Denison Mines Inc. February 2019.
- Minnow Environmental Inc., 2021. Serpent River Watershed Cycle 5 (2014 to 2019) State of the Environment Report. Prepared for Rio Algom Limited and Denison Mines Inc. March 2021.
- Minnow Environmental Inc., 2022. Investigation into the Surface Water Quality of Unnamed Pond, Stanrock TMA Site, Elliot Lake, ON. February 2022.
- Minnow Environmental Inc. 2024. Cycle 6 Study Design for the TOMP, SAMP and SRWMP. Prepared for Rio Algom Limited and Denison Mines Inc. November 2024.
- Denison Mines Inc. and Rio Algom Limited. Serpent River Watershed Monitoring Program 2024 Annual Water Quality Report. (Rio Algom Limited and Denison Mines Inc.) March 2025.
- Denison Mining Limited (DML). 1995. Environmental Impact Statement (EIS) Decommissioning of the Denison and Stanrock Tailings Management Areas. February 1995.
- Golder Associates Ltd. (Golder) 2021a. 2021 Tailings Dam Safety Inspection Report Denison TMA 1&2. June 2022.
- Golder Associates Ltd. (Golder) 2021b. 2021 Tailings Dam Safety Inspection Report Denison Stanrock Tailings Management Area. June 2022.

APPENDIX I Summary of Cycle 5

Summary of Changes to the Elliot Lake Monitoring Programs (IBMP, TOMP, SAMP, and SRWMP) and Associated Documents^b

Cycle	Report Title	Year	Period Covered	Descriptions of Changes to the Monitoring Programs within Each Cycle
	Serpent River Watershed Monitoring Program Framework Document	1999		
	In-Basin Monitoring Program Report	1999	historical monitoring data	
Cycle 1	Serpent River Watershed and In- Basin Monitoring Program – Implementation Document	1999	data	IBMP, TOMP, SAMP, and SRWMP were developed based on program objectives and existing monitoring data collected over the period of operations and decommissioning.
	Serpent River Watershed Monitoring Program -1999 Study	2001	4000 45 2000	
	In-Basin Monitoring Program for the Uranium Tailings Areas - 1999 Study	2001	1999 to 2000	
	Overview of Elliot Lake Monitoring Programs and Source Area Monitoring Program Design	2002		Changes only SRWMP most associated with optimization after first cycle of program
	TMA Operational Monitoring Program Design (TOMP)	2002		was complete: • monitoring substances reduced to mine indicator parameters (barium, cobalt, DOC, iron, manganese, radium-226, selenium, silver, sulphate and uranium);
Cycle 2	Cycle 2 Study Design – Serpent River Watershed and In- Basin Monitoring Programs	2004	2000 to 2004	 addition of two lake reference stations (Summers and Semiwite lakes) and 3 stream reference areas (SR-16, SR-17 and SR-18); removal of shallow lakes for sediment and benthic sampling (Westner, Grassy, Halfmoom, Upper Cinder and Horne lakes);
Cycle 2	Serpent River Watershed Monitoring Program: Cycle 2 Interpretive Report	2005	2000 10 2004	 removal of some stream sediment and benthic stations (D-15, SC-03 and SR-07); removal of Depot Lake and Serpent Harbour; addition of May Lake; the transfer of some SRWMP stations to SAMP or TOMP (N-12, ECA-131, P-11,
	Serpent River In-Basin Monitoring Program: Cycle 2 Interpretive Report - 2004 Study	2005		MPE and Q-23); and • fish health assessment eliminated based on performance, fish community assessment added for McCabe Lake and fish tissue monitoring reduced in scope
	Serpent River Watershed State of the Environment	2009		based on performance.
	Monitoring Framework For Closed Uranium Mines Near Elliot Lake	2009		IBMP eliminated based on objectives of program being achieved.
	In Basin Monitoring Program, Cycle 3 Study Design	2009		TOMP and SAMP: • removal of silver, selenium based on performance and removal of conductivity based on redundancy with sulphate; and


Cycle 3	Serpent River Watershed Monitoring Program: Cycle 3 Study Design Source Area Monitoring Program Revised Study Design Tailing Management Area Monitoring Program (TOMP) Revised Study Design Serpent River Watershed State of the Environment Report	2009 2009 2009 2011	- 2005 to 2009	DOC, hardness and flow added at selected stations. SRWMP: removal of selenium and sliver based on performance; removal of station SR-12, ELO, SR-09, SR-15, SR-02, SR-03, SR-11, P-01, QL-01 and SR-16 and SR-17 based on performance; monthly monitoring frequency reduced to quarterly; sediment and benthic monitoring removed from Whiskey, Evans and Cinder lakes based on redundancy; depositional streams (Q-20, D-6, SR-06, M-01 and SR-08) based on very high natural variability masking results; and fishing in McCabe Lake and fish tissue monitoring eliminated based on performance.
Cycle 4	Cycle 4 Study Design For the SRWMP, SAMP and TOMP Serpent River Watershed Cycle 4	2014 ^a	- 2010 to 2014	Minor changes to TOMP and SAMP . SRWMP: • elimination of reference stations SR-05, P-222 and SR-14; • removal of cobalt as substance for monitoring, addition of DOC; • far-field lakes removed from the program (Hough, Pecors, and McCarthy); • removal of Rochester Lake as a sediment and benthic reference area; and
	State of the Environment	2016		reduction in benthic and sediment sampling to 1/10 years based on measured deposition rates.
Cycle 5	Cycle 5 Study Design For the SRWMP, SAMP and TOMP	2019	2015 to 2019	TOMP, SAMP, and SRWMP: • improved approach to trend analysis of surface water quality using the non-parametric seasonal Kendall test. SRWMP: • improved approach to calculate benchmark upper limit of background water quality values have previously been calculated based on the upper 95th percentile of values collect across all five years (rather than annual means); • use of a Serpent River Watershed site-specific dose-based radium-226 benchmark for assessment of water quality; • addition of a lake-specific dose-based radium-226 benchmark for sediment quality; and
	Serpent River Watershed Cycle 5 State of the Environment	2021		 sediment and benthic monitoring removed from Elliot Lake based on improvements in water quality, negligible mine-related sediment toxicity, and gradual improvement in benthic invertebrate communities.


^a Study Design was submitted to CNSC and JRG in 2014 but reissued with agency comments in 2016.

Notes: IBMP = In Basin Monitoring Program. TOMP = Tailings Management Area Monitoring Program. SAMP = Source Area Monitoring Program. SRWMP = Serpent River Watershed Monitoring Program.

^b Table 1.2, Cycle 5 State of the Environment Report, Minnow, 2021

APPENDIX II Site Maps, Sampling Requirements

Stanrock C of A Performance Monitoring

															SAMP N	IETALS	
Sampling Station	Location / Description	Coordinates	Purpose	Flow	Hd	Conductivity	Sulphate	²²⁶ Radium (Total)	Acidity	Alkalinity	Hardness	DOC	Iron	Barium	Cobalt	Manganese	Uranium
DS-11	Seepage of Dam A	N 5146624 E 381977	MOE	4	4	4											
DO 11	Occpage of Bann A	N 5146692 E 382006	WOL														1
DS-12	Seepage of Dam B	N 5147007 E 380926	MOE	4	4	4											
DS-13	Seepage of Dam C	N 5146909 E 381145	MOE	4	4	4											
D3-13	Seepage of Dain C	N 5146841 E 381158	WOL	4	4	4											
DS-14	Seepage of Dam AD	N 5146658 E 381360	MOE	4	4	4											
DS-18	Halfmoon Lake Outlet	N 5145050 E 383761	MOE	4	4		4	4					4	4	4	4	4
ST-1	Downstream of Dam G	N 5146648 E 380709	MOE		4	4											
ST-1A	Dam J at toe of dam	N 5146524 E 381229	MOE		4	4											
ST-3	Downstream of Dam G	N 5146671 E 380699	MOE		4	4											
ST-3A	Dam G at Toe of Dam	N 5146867 E 380850	MOE		4	4											
ST-4	Within Quirke Lake Delta	N 5146606 E 380354	MOE		4	4	4	4	4	4	4	4	4	4	4	4	4

Denison Groundwater Performance Monitoring

Sampling Station	Location / Description	Coordinates	Туре	Purpose	Elevation	Conductivity	рН	Acidity	Iron
BH91-D1	Dam 17 North Abutment	N 5148801 E 377359	Groundwater (2 wells)	TOMP	2	2	2	2	2
BH91-D3	Dam 17 North Valley, Toe	N 5148649 E 377430	Groundwater (2 wells)	TOMP	2	2	2	2	2
BH91-D9	Dam 1 North Ridge, Toe	N 5150352 E 375379	Groundwater (1 well)	TOMP	1	1	1	1	1
BH91-DG4	Below Dam 10	N 5149006 E 374508	Groundwater (1 well)	TOMP	1	1	1	1	1
BH91-SG2	Upstream of Dam D	N 5146809 E 381477	Porewater (2 wells)	TOMP	2	2	2	2	2
PN-ST3	Upstream of Dam A	N 5146853 E 381897	Porewater (4 wells)	TOMP	4	4	4	4	4
BH91-SG1	Downstream of Dam A	N 5146749 E 382014	Groundwater (1 well)	TOMP	1	1	1	1	1
BH91-SG3	Downstream of Dam D	N 5146669 E 381444	Groundwater (2 wells)	TOMP	2	2	2	2	2
BH98-15	Downstream of Dam C	N 5146851 E 381177	Groundwater (1 well)	TOMP	1	1	1	1	1
BH98-16	Downstream of Dam B	N 5147093 E 380933	Groundwater (1 well)	TOMP	1	1	1	1	1

Denison TOMP/SAMP Surface Water Performance Monitoring

															SAMP METALS				Toxicity		
Sampling Station	Location / Description	Coordinates	Purpose	Elevation	Flow	Нq	Conductivity	Sulphate	²²⁶ Radium (Total)	TSS	Acidity	Hardness	200	Iron	Barium	Cobalt	Manganese	Uranium	Acute Rainbow Trout	ø	Chronic Ceriodaphnia dubia
D-1	TMA-1 Overflow	N 5149191 E 375468	TOMP	52	261	261		4	12		4			4	4	4	4	4			
D-2	TMA-1 Stollery Lake Overflow	N 5149421 E 374446	TOMP		261	52			52	52											
D-3	TMA-2 Effluent	N 5150280 E 374485	TOMP		261	52			52	52											
D-22	TMA-2 ETP Influent	N 5150391 E 375169	TOMP			52		4	12					4	4	4	4	4			
D-25	TMA-2 Overflow into TMA-1	N 5149357 E 376357	TOMP			2		2	2		2			2							
DS-1	Stanrock Moose Lake Outlet to Orient Lake	N 5146185 E 383401	TOMP		52	52			4												
DS-2	Stanrock ETP Influent	N 5146416 E 382437	TOMP		261	261		4	12		4			4	4	4	4	4			
DS-3	Stanrock ETP Effluent	N 5146424 E 382483	TOMP			261			12												
DS-4	Stanrock Final Discharge @ Orient Lake Outlet	N 5146327 E 383888	TOMP		52	52			52	52											
DS-5	Orient Creek Discharge into Moose Lake	N 5145956 E 382549	TOMP		4	4	4														
DS-6	Moose Lake Narrows upstream of Dam K	N 5146062 E 383194	TOMP		52	52															
Denison ⁻	TOMP Sites Sample Subtotal				1256	1153		14	210	156	10			14	12	12	12	12	0	0	0
D-2	TMA-1 Stollery Lake Overflow	N 5149421 E 374446	SAMP		52	52		12	12			12	12	12	12	12	12	12	2	2	2
D-3	TMA-2 Effluent	N 5150280 E 374485	SAMP		52	52		12	12			12	12	12	12	12	12	12			
D-9	Denison TMA-1; Dam 9 Seepage	N 5148462 E 377550	SAMP		4	4		4	4			4	4	4	4	4	4	4			
D-16	Denison TMA-1; Dam 17 Seepage	N 5149244 E 376814	SAMP		4	4		4	4			4	4	4	4	4	4	4			
DS-4	Stanrock Final Discharge @ Orient Lake Outlet	N 5146327 E 383888	SAMP		52	52		12	12			12	12	12	12	12	12	12	2	2	2
DS-16	Stanrock TMA; Quirke Lake Delta	N 5146663 E 380417	SAMP		4	4		4	4			4	4	4	4	4	4	4			
Denison S	SAMP Sites Sample Subtotal				168	168		48	48	0	0			48	48	48	48	48	4	4	4
Denison ⁻	Total Samples				1424	1321		62	258	156	10	48	48	62	60	60	60	60	4	4	4
FB	Field Blank							12	12	12		4	4	12	12	12	12	12			
BS	Blind Sample							12	12	12	-	4	4	12	12	12	12	12			
	amples Required based on 2002 operating days.	1						4.6	19.7		0.4	5.0	5.0	5.4		5.4	5.4	5.4			

APPENDIX III Flagged Data & QA/QC Results

						MIIAES
Location	Analyte	Date	Low	Hi	Result	Comment
D-16	U	2024-01-04	0.0002	0.0008	0.000036 mg/L	This result flags low because of the lower MDL being reported. This data is accepted.
D-3	Co	2024-01-09	0.0005	0.0005	0.000056 mg/L	This result flags low because of the lower MDL being reported. This data is accepted.
	U	2024-01-09	0	0.0095	0.0101 mg/L	This result is just above the high flag limit and similar to values measured in the past year.
DS-1	Ra	2024-01-09	0	0.0656	0.07 Bq/L	This result is just above the high flag limit . Compared to 2023 it seems high. Reassay requested and reject this result. Reassay result of 0.019 Bq/L is accepted in and within historical range.
DS-11	CONDF	2024-01-05	56.52397	866.676	985.64 µmho/cm	This result is above high flag. This is a result of using a weighted average of the 2 station components. Previous results used only the lower value. Result not unexpected
	рН	2024-01-05	5.5	7.5	5.3	for this location.
DS-2	Ra	2024-01-03	0.1118	0.2346	0.052 Bq/L	This result is low for this location. Check with lab that this isn't a decimal error. Asking for reassay. Rejecting result due to lab error.
DS-2	Ra	2024-01-03	0.1118	0.2346	0.267 Bq/L	Original result was 0.052, rejected due to lab error. Accepted reassay result 0.267 Bq/L slightly above high flag, but acceptable
	U	2024-01-03	0.0000	0.0497	0.0537 mg/L	This result is slightly above the high flag but similar to historical values.

Location	Analyte	Date	Low	Hi	Result	Comment
FBDST	Ва	2024-01-09	0.0013	0.0081	0.0001 mg/L	This data is inline with FB data but flags because of the lower reported MDL. This data is accepted.
	Co	2024-01-09	0.0001	0.0008	0.000007 mg/L	
	U	2024-01-09	0.00002	0.0010	0.000011 mg/L	
D-3	Со	2024-02-06	0.0005	0.0005	0.000013 mg/L	Result is below low flag. Lower MDL at lab, accepting result
	U	2024-02-06	0	0.0090	0.0175 mg/L	Result is above high flag. Accepting result. 4 last results higher than usual. Continue to monitor
DS-4	DOC	2024-02-06	8.0	2.6	2.6 mg/L	Result is slightly above high flag, but acceptable.
FBDST	Ва	2024-02-06	0.0013	0.0082	0.00008 mg/L	Result is below low flag. Lower MDL at lab, accepting result
	Co	2024-02-06	0.0001	0.0008 <	0.000004 mg/L	Result is below low flag. Lower MDL at lab, accepting result
D-1	Ва	2024-03-05	0	0.1769	0.201 mg/L	Result is above high flag, accept and continue to monitor
	Co	2024-03-05	0.0005	0.0005	0.000095 mg/L	Flag is low. lower detection limit at lab, accept value
D-25	FLOW	2024-03-06	0	43.61	68.01 L/s	Flag is high. accept value, high flows due to precipitation event
D-3	Co	2024-03-05	0.0005	0.0005	0.00183 mg/L	Result is high, reassay confirmed high result, accept original. Potential influence from high flows or beaver activity, results back to historical trends on next samples.
	Fe	2024-03-05	0	0.579	1.58 mg/L	Result is high, reassay confirmed high result, accept original. Potential influence from high flows or beaver activity, results back to historical trends on next samples.
	FLOW	2024-03-05	0	44.88	136 L/s	High flag, high flows due to precipitation event

						MIIAES
Location	Analyte	Date	Low	Hi	Result	Comment
D-3	Mn	2024-03-05	0	0.1252	0.42 mg/L	Result is high, reassay confirmed high result, accept
						original. Potential influence from high flows or beaver
						activity, results back to historical trends on next samples.
	TSS	2024-03-05	0.33	1.79	3 mg/L	Result is high, reassay confirmed high result, accept
						original. High flows influencing debris in water
DS-1	FLOW	2024-03-05	0	145.76	212 L/s	Accept values, high flows due to precipitation event
		2024-03-06	0	145.76	222 L/s	
		2024-03-07	0	145.76	175 L/s	
		2024-03-11	0	145.76	195 L/s	Accept values, higher flows due to spring freshet
		2024-03-12	0	145.76	169 L/s	
		2024-03-13	0	145.76	166 L/s	
		2024-03-14	0	145.76	163 L/s	
		2024-03-15	0	145.76	153 L/s	
		2024-03-27	0	145.76	169 L/s	
DS-16	Со	2024-03-05	0.0005	0.0005	0.000261 mg/L	Result is below low flag. Accept value, lower detection limit from lab
	CONDF	2024-03-26	22.2	69.3	88.5 µmho/cm	Result is above high flag. Accept value, continue to monitor
	FLOW	2024-03-05	0	2.55	14 L/s	Accept value, high flows due to precipitation event
	pН	2024-03-05	6.4	7.2	5.26	Low flag, accept value and continue to monitor
		2024-03-22	6.4	7.2	7.5	High flag, accept value and continue to monitor
		2024-03-26	6.4	7.2	6.17	Low flag, accept value and continue to monitor

						MINES
Location	Analyte	Date	Low	Hi	Result	Comment
DS-16	Ra	2024-03-05	0.0027	0.0093	0.028 Bq/L	Flag is high, asking for reassay. Reject result, Reassay value is <0.005Bq/L
	U	2024-03-05	0.0005	0.0005	0.000338 mg/L	Result is below low flag, accept value, lower detection limit from lab
DS-2	Ra	2024-03-05	0.1046	0.2354	0.27 Bq/L	Result is slightly above high flag, accept value
DS-4	FLOW	2024-03-05	0	197.16	254 L/s	Accept value, high flows due to precipitation event
	рН	2024-03-26	6.7	7.9	8.1	Flag is high, but acceptable within discharge criteria, continue to monitor
	TSS	2024-03-05	0	2.69	3 mg/L	High flag. Accept value, influenced by high flows bringing debris through creeks
DS-6	FLOW	2024-03-05	0	182.66	194 L/s	Accept value, high flows due to precipitation event
		2024-03-13	0	182.66	203 L/s	Accept value, higher flows due to spring freshet
FBDST	Ва	2024-03-05	0.0013	0.0082 <	0.00026 mg/L	Results are below low flag, accept values, lower detection
	Co	2024-03-05	0.0001	0.0008 <	0.000004 mg/L	limit from lab
	U	2024-03-05	1.08E-05	0.00096	0.000006 mg/L	
BSDST	TSS	2024-04-02	1	1	3 mg/L	High flag, result is within acceptable range
D-1	Co	2024-04-02	0.0005	0.0005	0.000111 mg/L	Accepting result, detection limit is now lower
D-16	U	2024-04-02	0.0002	0.0008	0.000031 mg/L	Accepting result, detection limit is now lower
D-3	Со	2024-04-02	0.0005	0.0005	0.000065 mg/L	Accepting result, detection limit is now lower
	FLOW	2024-04-30	0	76.86	100 L/s	Heavy rain, accepting results

Location	Analyte	Date	Low	Hi	Result	Comment
D-9	Ва	2024-04-02	0.0133	0.0259	0.0117 mg/L	Low flag. Result is slightly lower than the low flag, but acceptable.
DS-1	FLOW	2024-04-12	0	194.47	195 L/s	Accepting result, freshet and heavy rain
		2024-04-30	0	194.47	212 L/s	Heavy rain, accepting results
DS-16	Со	2024-04-02	0.0005	0.0005	0.000247 mg/L	Accepting result, detection limit is now lower
	Ra	2024-04-02	0.0025	0.0091	0.032 Bq/L	Result is above high flag. Reassay
	U	2024-04-02	0.0005	0.0005	0.000102 mg/L	Accepting result, detection limit is now lower
DS-2	U	2024-04-02	0	0.0518	0.055 mg/L	Result is slightly above the high flag, but acceptable
DS-4	TSS	2024-04-02	0	2.71	3 mg/L	Result is slightly above the high flag, but within acceptable range.
DS-6	FLOW	2024-04-12	0	212.77	232 L/s	Accepting result, freshet and heavy rain
FBDST	Со	2024-04-02	0.0001	0.0008 <	0.000004 mg/L	Accepting result, detection limit is now lower
BSDST	TSS	2024-05-08	1	1	2 mg/L	Result is above high flag, but within acceptable range
D-2	Ra	2024-05-14	0	0.1462	0.159 Bq/L	High flag, results within historical range
D-3	Со	2024-05-06	0.0005	0.0005	0.000078 mg/L	Low flag, lower detection limit, accepting results
	hard	2024-05-06	56.2	78.7	87.2 mg/L	High flag. Accepting results, within historical range
DS-1	рН	2024-05-01	6.4	8.5	8.8	High flag. Accepting results, within historical range

Location	Analyte	Date	Low	Hi	Result	Comment
FBDST	Ва	2024-05-08	0.0012	0.0082	0.0002 mg/L	Lower detection limit, accepting results
	Со	2024-05-08	0.0001	0.0008 <	< 0.000004 mg/L	Lower detection limit, accepting results
D-1	Ra	2024-06-04	1.2702	1.7898	2.27 Bq/L	Result is above high flag, but within historical range
D-2	Ra	2024-06-04	0	0.0598	0.068 Bq/L	Result is slightly above high flag, but within historical range
DS-4	Fe	2024-06-18	0.0480	0.0876	0.039 mg/L	Result is below low flag, accepting result
	Ra	2024-06-11	0.0691	0.1570	0.045 Bq/L	Result is below low flag, within historical range, accepting result
		2024-06-25	0.0691	0.1570	0.261 Bq/L	Result is above high flag, accept and continue to monitor
FBDST	Ва	2024-06-18	0.0012	0.0082	0.00011 mg/L	Low flag. Lower detection limit, accepting results
	Co	2024-06-18	0.0001	0.0008 <	< 0.000004 mg/L	
D-1	рН	2024-07-16	6.8	8.8	9.1	Result just above high flag, accept result
	Ra	2024-07-16	1.58	1.58	1.45 Bq/L	Result similar to flag, accept result
D-13	CONDF	2024-07-11	665.144	927.745	956 µmho/cm	Accepting results
D-14	CONDF	2024-07-11	309.822	523.401	538 µmho/cm	Accepting results
D-16	U	2024-07-11	0.0001	0.0008	0.000125 mg/L	Result just below low flag, accept result
FBDST	Ва	2024-07-16	0.0011	0.0083	0.00013 mg/L	Low flag, blank sample, accept result
	Со	2024-07-16	0.0001	0.0008 <	0.000004 mg/L	Low flag, blank sample, accept result
BH91 SG2A	ACID	2024-08-19	1560.129	3392.78 <	1 mg/L	Analytical error, do not report

						WIINES
Location	Analyte	Date	Low	Hi	Result	Comment
BSDST	hard	2024-08-06	271.8	360.2	249 mg/L	Low flag, simlar to parent sample, accept result
D-13	рН	2024-08-23	6.34	7.1	6.33	Accepting results
D-14	рН	2024-08-23	6.76	7.2	6.72	Accepting results
D-2	Fe	2024-08-06	0.0553	0.5387	0.018 mg/L	Low flag, accept result, continue to monitor
	Mn	2024-08-06	0.0671	0.2396	0.036 mg/L	Low flag, accept result, continue to monitor
DS-1	рН	2024-08-15	6.5	8.5	6.5	Very similar to low flag, accept result
		2024-08-16	6.5	8.5	8.5	Very similar to high flag, accept result
DS-11	CONDF	2024-08-07		1147.282	1650 µmho/cm	Change to weighted average calculation in 2024, very low flow, value as expected
DS-4	Fe	2024-08-06	0.0411	0.0956	0.041 mg/L	Very similar to low flag, accept result
	hard	2024-08-06	294.2	345.2	291 mg/L	Very similar to low flag, accept result
	Ra	2024-08-06	0.0699	0.1641	0.174 Bq/L	Maintenance + dry conditions, continue to monitor
		2024-08-12	0.0699	0.1641	0.222 Bq/L	Maintenance + dry conditions, continue to monitor
FBDST	Ва	2024-08-06	0.0011	0.0083	0.00008 mg/L	Low flag, blanks, accept results
	Со	2024-08-06	0.0001	0.0008 <	0.000004 mg/L	
BSDST	hard	2024-09-03	302.8	345.2	275 mg/L	Low flag, similar to parent sample, accept result
	SO4	2024-09-03	250	250	230 mg/L	Low flag, similar to parent sample, accept result
D-1	Со	2024-09-23	0.0005	0.0005	0.000145 mg/L	Low flag, accept result

Location	Analyte	Date	Low	Hi	Result	Comment
D-2	hard	2024-09-03	316.3	341.7	270 mg/L	Low flag, accept result
		2024-09-10	316.3	341.7	288 mg/L	Low flag, accept result
	U	2024-09-03	0.0316	0.0507	0.0312 mg/L	Low flag, not much lower than flag, accept result
DS-4	hard	2024-09-03	307.0	341.0	284 mg/L	Low flag, accept result
		2024-09-10	307.0	341.0	299 mg/L	Low flag, accept result
	Ra	2024-09-03	0.0810	0.1622	0.182 Bq/L	Within historical range, accept result
		2024-09-10	0.0810	0.1622	0.18 Bq/L	Within historical range, and similar to previous week, accept result
FBDST	Ва	2024-09-03	0.0011	0.0083 <	0.00008 mg/L	Low flag, blank, accept result
	Со	2024-09-03	0.0001	0.0008 <	0.000004 mg/L	Low flag, blank, accept result
D-16	U	2024-10-22	0.0001	0.0008 <	0.001 mg/L	Accept, less than MDL
D-2	Ra	2024-10-29	0.0150	0.0390	0.048 Bq/L	Accept result, within historical range
D-2	TSS	2024-10-01	1	1	1.3 mg/L	Accept result, within historical range
		2024-10-08	1	1 <	0.67 mg/L	Accept, less than MDL
		2024-10-16	1	1 <	0.67 mg/L	
		2024-10-22	1	1 <	0.67 mg/L	
		2024-10-29	1	1	3.7 mg/L	Accept result, within historical range
D-25	ACID	2024-10-31	1	1	5 mg/L	Accept, lab Method detection limit is 5. Ask lab to lower MDL.
D-9	Ra	2024-10-22	0.0028	0.0103	0.011 Bq/L	Accept result, continue to monitor

						MINES
Location	Analyte	Date	Low	Hi	Result	Comment
FBDST	Ва	2024-10-01	0.0010	0.0083 <	0.001 mg/L	Accept, blank less than MDL
	Co	2024-10-01	0.0001	> 8000.0	0.0001 mg/L	
	SO4	2024-10-01	0.00	0.23 <	0.5 mg/L	Accept, results still low
	U	2024-10-01	0	0.0010 <	0.001 mg/L	Accept, blank less than MDL
D-1	ACID	2024-11-01	1	1 <	5 mg/L	Accept, lab Method detection limit is 5. Ask lab about MDL.
	Co	2024-11-01	0.0005	0.0005	0.0001 mg/L	Accept, low value
D-25	рН	2024-11-12	6.8	8.1	8.33	Accept, continue to monitor
DS-5	FLOW	2024-11-01	0	10.47	13.22 L/s	Accept, flow seems accurate
FBDST	Ва	2024-11-05	0.0010	0.0083 <	0.001 mg/L	Accept, blank lower than MDL
	SO4	2024-11-05	0.00	0.23 <	0.5 mg/L	Accept, blank lower than MDL, ask lab to lower MDL
	U	2024-11-05	0	0.0010 <	0.001 mg/L	Accept, blank lower than MDL, talk to lab about lowering MDL
D-22	рН	2024-12-30	6.1	7.2	6.07	Accept value, rain influence bringing down phs values across all sites. Continue to monitor, ph value back up in week following
DS-16	Co	2024-12-30	0.0005	0.0005	0.0002 mg/L	low value, accept
	U	2024-12-30	0.0005	0.0005 <	0.001 mg/L	Lab MDL change, accept value
FBDST	SO4	2024-12-03	0.00	0.23	7.5 mg/L	Reject value, potential sample contamination, lab reanalysis result was <0.5 mg/L
	U	2024-12-03	0	0.0010 <	0.001 mg/L	Accept, lab MDL change

SAMP and TOMP DATA QUALITY REPORTING Field Blank 2024 Revision 2007-01

Registry: RF8.5.4-02

Page 1 of 1

	Date	рН	Acid mg/L	TSS mg/L	Hardness mg/L as CaC0	Sulphate	Radium Bg/L	Uranium mg/L	Barium mg/L	Cobalt mg/L	Iron mg/L	Manganese mg/L
Blank Criteri	ia		g/ =	9/ =	3		- 4/ -	9/=	9/=	9/ =	9/ =	9/ =
	SAMP	1 -	-	-	1.0	0.2	0.01	0.001	0.01	0.0010	0.04	0.004
	TOMP	2 -	2	2	-	0.2	0.01	0.001	0.01	0.0010	0.04	0.004
FBDST2	2024.01	6.0	2									
FBDST	2024.01	5.3		< 1.0	< 0.1	< 0.2	< 0.005	0.0000	0.000	0.0000	< 0.01	< 0.000
FBDST	2024.02	5.3		< 1.0	< 0.1	< 0.2	< 0.005	0.0000	0.000	< 0.0000	< 0.01	0.000
FBDST	2024.03	5.8		1.0	< 0.1	< 0.2	< 0.005	0.0000	< 0.000	< 0.0000	< 0.01	< 0.000
FBDST	2024.04	5.5		1.0	< 0.1	< 0.2	0.005	0.0000	0.001	< 0.0000	< 0.01	0.000
FBDST2	2024.04	5.4	3									
FBDST	2024.05	6.0		1.0	0.1	< 0.2	< 0.005	0.0001	0.000	< 0.0000	< 0.01	0.000
FBDST	2024.06	6.0		1.0	< 0.1	< 0.2	< 0.005	0.0000	0.000	< 0.0000	< 0.01	0.000
FBDST2	2024.07	5.0	2									
FBDST	2024.07	5.8		< 1.0	0.3	< 0.2	< 0.005	0.0001	0.000	< 0.0000	< 0.01	0.000
FBDST	2024.08	6.7		1.0	0.3	< 0.2	< 0.005	0.0000	0.000	< 0.0000	< 0.01	< 0.000
FBDST	2024.09	6.4		< 1.0	< 0.1	< 0.2	< 0.005	< 0.0000	< 0.000	< 0.0000	< 0.01	0.000
FBDST	2024.10	4.5		< 0.7	< 0.1	< 0.5	< 0.007	< 0.0010	< 0.001	< 0.0001	0.04	< 0.001
FBDST	2024.11	7.2		< 0.7	< 0.1	< 0.5	< 0.007	< 0.0010	< 0.001	< 0.0001	< 0.02	< 0.001
FBDST2	2024.11	4.5	9									
FBDST	2024.12	5.2		< 0.7	< 0.1	< 0.5	< 0.007	< 0.0010	< 0.001	< 0.0001	0.05	< 0.001
Count		16		4 12	12	12	12	12	12	12	12	12
# Exceedan	ces	0		2 0	0	3	0	0	0	0	1	0
Average		5.7		4 0.9	0.1	< 0.3	0.006	0.0003	0.000	0.0000	0.01	0.000
Max		7.2		9 1.0	0.3	< 0.5	0.007	0.0010	0.001	0.0001	0.05	0.001
Min		4.5		2 0.7	0.1	< 0.2	0.005	0.0000	0.000	0.0000	0.01	0.000

¹ Field blank criteria from Table 5.1 Overview of Elliot lake Monitoring Programs and Source Area Monitoring Program Design (Minnow, 2002a)

² Field blank criteria from Table 4.1 TMA Operational Monitoring Program (TOMP) Design (Minnow, 2002b) Bold Indicates an exceedance of the Blank Criteria

SAMP and TOMP DATA QUALITY REPORTING Field Precision 2024 Revision 2007-01

Registry: RF8.5.4-02

Page 1 of 2

Location	Date	рН	Acid	Hardness	TSS	Sulphate	Radium (total)	Uranium	Barium	Cobalt	Iron	Manganese
			mg/L	mg/L	mg/L	mg/L	Bq/L	mg/L	mg/L	mg/L	mg/L	mg/L
D-2	2024.01	7.4		346.0	< 1.0	300.0	0.031	0.0437	0.062	0.0005	0.43	0.183
BSDST		7.3		352.0	< 1.0	300.0	0.024	0.0442	0.063	0.0005	0.45	0.188
variance		1%		2%	0%	0%	25%	1%	2%	0%	5%	3%
D-2	2024.02	7.5		350.0	< 1.0	300.0	0.038	0.0456	0.056	0.0005	0.60	0.191
BSDST		7.4		353.0	1.0	300.0	0.018	0.0437	0.055	0.0004	0.57	0.188
variance		1%		1%	0%	0%	71%	4%	2%	22%	5%	2%
D-2	2024.03	7.2		312.0	< 2.0	250.0	0.050	0.0436	0.076	0.0007	0.62	0.273
BSDST		7.2		301.0	3.0	260.0	0.041	0.0420	0.070	0.0007	0.60	0.271
variance		0%		4%	40%	4%	20%	4%	8%	0%	3%	1%
D-2	2024.04	7.1		198.0	3.0	130.0	0.243	0.0168	0.996	0.0005	0.67	0.140
BSDST		7.2		188.0	3.0	130.0	0.270	0.0160	0.963	0.0005	0.66	0.140
variance		1%		5%	0%	0%	11%	5%	3%	0%	2%	0%
D-2	2024.05	7.5		219.0	2.0	170.0	0.122	0.0270	0.576	0.0004	0.34	0.148
BSDST		7.5		220.0	2.0	170.0	0.095	0.0271	0.583	0.0004	0.33	0.144
variance		0%		0%	0%	0%	25%	0%	1%	0%	3%	3%
D-2	2024.06	7.2		243.0	1.0	210.0	0.035	0.0269	0.220	0.0002	0.24	0.063
BSDST		7.2		239.0	1.0	200.0	0.039	0.0268	0.231	0.0002	0.22	0.077
variance		0%		2%	0%	5%	11%	0%	5%	0%	9%	20%
D-2	2024.07	7.4		260.0	1.0	190.0	0.030	0.0240	0.160	0.0001	0.18	0.066
BSDST		7.4		269.0	1.0	200.0	0.035	0.0240	0.162	0.0002	0.20	0.082
variance		0%		3%	0%	5%	15%	0%	1%	67%	11%	22%
D-2	2024.08	7.5		255.0	1.0	220.0	0.028	0.0258	0.131	0.0001	0.02	0.036
BSDST		7.5		249.0	1.0	220.0	< 0.005	0.0270	0.133	0.0002	0.29	0.065
variance		0%		2%	0%	0%	139%	5%	2%	67%	174%	57%
D-2	2024.09	7.2		270.0	< 1.0	230.0	0.021	0.0312	0.112	0.0002	0.25	0.083
BSDST		7.2		275.0	< 1.0	230.0	0.044	0.0308	0.117	0.0002	0.25	0.082
variance		0%		2%	0%	0%	71%	1%	4%	0%	0%	1%
D-2	2024.10	7.4		314.0	1.3	258.0	0.018	0.0380	0.105	0.0004	0.48	0.108
BSDST		7.4		316.0	1.3	259.0	0.023	0.0370	0.102	0.0004	0.45	0.104

SAMP and TOMP DATA QUALITY REPORTING Field Precision 2024 Revision 2007-01

Registry: RF8.5.4-02

Page 2 of 2

Location	Date	рН	Acid	Hardness	TSS	Sulphate	Radium (total)	Uranium	Barium	Cobalt	Iron	Manganese
			mg/L	mg/L	mg/L	mg/L	Bq/L	mg/L	mg/L	mg/L	mg/L	mg/L
variance		0%		1%	0%	0%	24%	3%	3%	0%	6%	4%
D-2	2024.11	7.3		301.0	< 0.7	261.0	0.047	0.0450	0.085	0.0005	0.46	0.142
BSDST		7.6		310.0	< 0.7	286.0	0.051	0.0450	0.088	0.0005	0.48	0.145
variance		4%		3%	0%	9%	8%	0%	3%	0%	4%	2%
D-2	2024.12	7.4		323.0	< 0.7	282.0	0.033	0.0350	0.083	0.0005	0.60	0.119
BSDST		7.4		322.0	< 0.7	251.0	0.040	0.0360	0.080	0.0005	0.59	0.115
variance		0%		0%	0%	12%	19%	3%	4%	0%	2%	3%
DS-2	2024.01	2.9	218.0									
BSDST2		2.9	213.0									
variance		0%	2%									
DS-2	2024.04	3.0	224.0									
BSDST2		3.0	223.0									
variance		0%	0%									
DS-2	2024.07	2.7	219.0									
BSDST2		2.7	223.0									
variance		0%	2%									
DS-2	2024.11	2.7	186.0									
BSDST2		2.7	188.0									
variance		0%	1%									
Count		16	4	12	12	12	12	12	12	12	12	12
Average		1%	1%	2%	3%	3%	37%	2%	3%	13%	19%	10%
Max		4%	2%	5%	40%	12%	139%	5%	8%	67%	174%	57%
Min		0%	0%	0%	0%	0%	8%	0%	1%	0%	0%	0%
Criteria ¹		20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
# Exceedanc	es	0	0	0	0	0	6	0	0	3	1	2

¹ SAMP parameter criteria from Table 5.1 Overview of Elliot lake Monitoring Programs and Source Area Monitoring Program Design (Minnow, 2002a); TOMP parameter criteria from Table 4.1 TMA Operational Monitoring Pr

SAMP and TOMP DATA QUALITY REPORTING Field Blank Revision 2010.01

Report Form: RF8.5.4-01

Page 1 of 1

Date			Acidity	Sulphate	pHF	Iron	
			mg/L as CaCO3	mg/L		mg/L	
Blank Criteria		TOMP ¹	2	0.2		0.04	
2024.08	FBD-GW2		21.0	< 0.2	7.2	0.19	
2024.08	FBD-GW4		10.0	< 0.2	6.7	< 0.07	
2024.08	FBD-GW3		4.0	< 0.2	6.2	0.01	
Count			3	3	3	3	
# Exceedances			3	0	0	2	
Average			11.7	< 0.2	6.7	0.09	
Max			21	< 0.2	7.2	0.19	
Min			4	< 0.2	6.2	0.01	

¹ Field blank criteria from Table 4.1 TMA Operational Monitoring Program (TOMP) Design (Minnow, 2002b) Bold Indicates an exceedance of the Blank Criteria

Issued on: August 30, 2010 Expires on: August 30, 2011

SAMP and TOMP DATA QUALITY REPORTING Groundwater Field Precision Revision 2010.01

Registry: RF8.5.4-02

Page 1 of 1

Location	Date	pHF	Sulphate	Acidity	Iron
			mg/L	mg/L	mg/L
98-15A	2024.08	5.7	2200.0	829.0	412.00
BSD-GW2		5.7	2200.0	813.0	416.00
variance		0%	0%	2%	1%
BH91 DG4B	2024.08	6.5	550.0	< 1.0	11.00
BSD-GW3		6.5	620.0	< 1.0	11.10
variance		0%	12%	0%	1%
BH91 SG2A	2024.08	5.9	4600.0	*	1560.00
BSD-GW4		5.9	4600.0	*	1570.00
variance		0%	0%		1%
Count		3	3	2	3
Average		0%	4%	1%	1%
Min		0%	0%	0%	1%
Max		0%	12%	2%	1%
Criteria1		20%	20%	20%	20%
# Exceedances		0	0	0	0

Field criteria taken from Table 6.2 of the Cycle 5 Study Design for SRWMP, SAMP and TOMP (Minnow, 2019)

Bold Indicates an exceedance of the Blank Criteria

^{*}Analytical error, results not reportable

APPENDIX IV Laboratory QA/QC Results

Page 1 of 6

REPORT CODE: DEN-ANN24

REPORT TITLE: Annual 2024 Denison Data Quality

Report

REVISION: 1.0

ISSUED BY:

Quality Coordinator,

SGS Environmental, Lakefield

AUTHORIZED BY:

Technical Manager,

Losers din

SGS Environmental, Lakefield

DATE: 20 Feb. 2025

Table of Contents

1.	MANAGEMENT SYSTEM	3
2.	QUALITY CONTROL PARAMETERS	3
3.	NOTABLE OCCURANCES/ACTIONS	3
4.	QC DATA SUMMARY	3
4.1.	Blank Data3	
4.2.	Reference Material/Spiked Blank Data4	
4.3.	Duplicate Data 5	
4.4.	Spike Duplicate Data 5	
4.5.	QC Frequency 6	

1. MANAGEMENT SYSTEM

SGS Environmental, Lakefield is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation (CALA), for specific tests listed in the scope of accreditation. ISO/IEC 17025 addresses both the management system and the technical aspects of operating a testing laboratory.

The management system at SGS Environmental consists of a documented quality system, which is directed by the Quality Coordinator who is independent of the production area. All appropriate documentation (quality manual, methods, written instructions, standard operating procedures, and data approval criteria) is in place and includes both general and method specific quality control requirements.

Quality control procedures include duplicate samples, spiked blanks, spiked replicates, reagent/instrument blanks, preparation control samples, certified reference material analysis, and instrument control samples, as appropriate for the individual methods. Matrix matching of reference materials to samples is always attempted. Frequency of insertion of control samples is method specific and follows legislated guidelines. A summary of the quality control recoveries is presented in the tables following.

2. QUALITY CONTROL PARAMETERS

All QC parameters are taken directly from SGS LIMS. Denison samples are processed as part of our "worksheet" batch system. A compilation of all QC data appropriate to the parameters tested has been compiled below.

3. NOTABLE OCCURANCES/ACTIONS

- Data compiled from January 2024 to December 2024
- SGS Environmental, Lakefield laboratory performed 2619 analyses with 2342 QC checks, which represents 89% QC for sample analysis. Corrective Action: N/A
- All blank data results were within the data quality objectives. Corrective Action: N/A
- All CRM/spike blank data results were within the data quality objectives. Corrective
 Action: N/A
- No duplicate value exceeded the data quality objectives. Corrective Action: N/A
- No spike duplicates fell outside of the data quality objectives. Corrective Action: N/A

4. QC DATA SUMMARY

4.1. Blank Data

Parameter	Unit	Required Limit	Number of Blanks	Mean Blank Result
Acidity	mg/L as CaCO3	2	22	2.6

Confidential – Intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material.

File/Pathway: DEN-ANN24 Page 3 of 6

Silver	mg/L	0.0001	12	<0.0001
Alkalinity	mg/L as CaCO3	2	3	2
Arsenic	mg/L	0.0005	12	<0.0005
Barium	mg/L	0.005	69	<0.005
Cobalt	mg/L	0.0005	42	<0.0005
Copper	mg/L	0.0005	12	<0.0005
DOC	mg/L	0.5	29	<0.5
Iron	mg/L	0.02	49	<0.02
Manganese	mg/L	0.002	42	<0.002
Nickel	mg/L	0.002	12	<0.002
Lead	mg/L	0.00002	12	<0.00002
Ra226	Bg/L	0.005	81	<0.005
Selenium	mg/L	0.0005	12	<0.0005
Sulphate	mg/L	0.1	71	<0.1
Total Dissolved Solids	mg/L	10	11	<10
Total Suspended Solids	mg/L	1	92	<1
Uranium	mg/L	0.0005	42	<0.0005
Zinc	mg/L	0.001	12	<0.001

4.2. Reference Material/Spiked Blank Data

Parameter	Unit	Number of RM or SB	% Recovery
Acidity	mg/L as CaCO3	22	97.1
Silver	mg/L	12	99.9
Alkalinity	mg/L as CaCO3	3	98.0
Arsenic	mg/L	12	99.3
Barium	mg/L	69	99.2
Cobalt	mg/L	42	100.2
Copper	mg/L	12	100.3
DOC	mg/L	29	99.4
Iron	mg/L	49	100.7
Manganese	mg/L	42	99.9
Nickel	mg/L	12	99.5
Lead	mg/L	12	99.2
Ra226	Bq/L	81	100.4
Selenium	mg/L	12	99.1
Sulphate	mg/L	71	95.7
Total Dissolved Solids	Mg/L	0	
Total Suspended Solids	mg/L	92	96.9

Uranium	mg/L	42	99.9
Zinc	mg/L	12	98.7

4.3. Duplicate Data

4.3. Duplicate D	ala	Т		
Parameter	Unit	RPD* Limit	Number of Duplicates	RPD*
Acidity	mg/L as CaCO3	20	22	ND
Silver	mg/L	20	12	ND
Alkalinity	mg/L as CaCO3	20	3	1.3
Arsenic	mg/L	20	12	8.6
Barium	mg/L	20	69	3.4
Cobalt	mg/L	20	42	5.1
Copper	mg/L	20	12	5.1
DOC	mg/L	20	29	1.2
Iron	mg/L	20	49	2.9
Manganese	mg/L	20	42	3.4
Nickel	mg/L	20	12	5.9
Lead	mg/L	20	12	5.9
Ra226	Bg/L	20	81	11.2
Selenium	mg/L	20	12	9.2
Sulphate	mg/L	20	71	1.5
Total Dissolved Solids	mg/L	20	1	5.0
Total Suspended Solids	mg/L	20	92	1.6
Uranium	mg/L	20	42	3.5
Zinc	mg/L	20	12	4.6

^{*}RPD - Relative Percent Difference

ND - No Data, no detectable concentration of the parameter in the sample

4.4. Spike Duplicate Data

Parameter	Unit	Number of Spike Dups	Mean % Recovery
Silver	mg/L	12	89.7
Arsenic	mg/L	12	102.6
Barium	mg/L	69	100.2
Cobalt	mg/L	42	100.2
Copper	mg/L	12	97.0
DOC	mg/L	29	97.1
Iron	mg/L	49	105.6
Manganese	mg/L	42	102.9

Nickel	mg/L	12	100.8
Lead	mg/L	12	97.6
Selenium	mg/L	65	100.7
Sulphate	mg/L	13	96.8
Uranium	mg/L	11	100.5
Zinc	mg/L	65	106.4

4.5. QC Frequency

Total Analysis:	2619
Sum of QC Insertion:	2342
Total Number of Spiked Duplicate Samples:	462
Total Number of Duplicate Samples:	627
Total Number of Reference Materials/Spiked Blanks:	626
Total Number of Blanks:	627

REPORT TITLE: Annual 2024 Data Quality Report

REVISION: 1.0

ISSUED BY:

Brad Woodward

QAQC Director

Testmark Laboratories Ltd.

AUTHORIZED BY:

Brad Woodward

QAQC Director

Testmark Laboratories Ltd.

DATE: 11 Feb. 2024

Table of Contents

1.	MANAGEMENT SYSTEM	3
2.	QUALITY CONTROL PARAMETERS	3
3.	NOTABLE OCCURANCES/ACTIONS	3
4.	QC DATA SUMMARY	4
4.1.	Blank Data	4
4.2.	Reference Material/Spiked Blank Data	7
4.3.	Duplicate Data	11
4.4.	• •	
4.5.	QC Frequency	14

1. MANAGEMENT SYSTEM

Testmark Laboratories Ltd. is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation (CALA), for specific tests listed in the scope of accreditation; and licensed by the MECP. ISO/IEC 17025 addresses the management system and the technical aspects of operating a testing laboratory.

The management system at Testmark Laboratories Ltd. consists of a documented quality system, which is directed by the QAQC Director, who is independent of the production area. All appropriate documentation (quality manual, methods, written instructions, standard operating procedures, and data approval criteria) is in place with the Distributed Lab Information Management System (DLIMS) and includes general and method-specific quality controls.

Quality control procedures include duplicate samples, spiked blanks, spiked replicates, reagent/instrument blanks, preparation control samples, certified reference material analysis, and instrument control samples appropriate for individual testing methods. Reference materials are matched to samples matrices whenever possible. Control sample frequency is method-specific and follows or exceeds legislated guidelines.

2. QUALITY CONTROL PARAMETERS

Quality Control (QC) parameters are read from Testmark Laboratories Ltd. DLIMS. Client samples are processed in batches with associated method-specific quality assurance controls attached to all batches. This data reflects all QC done for the parameters tested for the client within the date range.

3. NOTABLE OCCURANCES/ACTIONS

- Data compiled from January 1st, 2024 to December 31st, 2024
- Performed 8,543 analyses with 6,033 QC checks, which represents 70.6% QC for sample analysis. Corrective Action: N/A
- 97.5% of all blank data results were within the data quality objectives; 100% within the expected range of uncertainty. Corrective Action: N/A
- 96.3% of all reference material/spike blank data results were within the data quality objectives;
 100% within the expected range of uncertainty. Corrective Action: N/A
- 99.8% of all duplicate data results were within the data quality objectives; 100% within the
 expected range of uncertainty. Corrective Action: N/A
- 99.7% of all spike duplicate data results were within the data quality objectives; 100% within the
 expected range of uncertainty. Corrective Action: N/A

4. QC DATA SUMMARY

4.1. Blank Data

Parameter	Unit	Required Limit	Number Of Blanks	Mean Blank Result
Acidity	mg/L as CaCO3	15	18	<5
Bromide	mg/L	0.15	35	<0.05
Chloride	mg/L	0.6	35	<0.2
Conductivity	μS/cm	5	7	1.357
Dissolved Aluminum	ug/L	3	16	<1
Dissolved Antimony	ug/L	3	16	<1
Dissolved Arsenic	ug/L	3	16	<1
Dissolved Barium	ug/L	3	23	<1
Dissolved Beryllium	ug/L	3	16	<1
Dissolved Bismuth	ug/L	3	16	<1
Dissolved Boron	ug/L	5	17	2.389
Dissolved Cadmium	ug/L	3	16	<1
Dissolved Calcium	ug/L	150	16	<50
Dissolved Cerium	ug/L	3	16	<1
Dissolved Cesium	ug/L	3	16	<1
Dissolved Chromium	ug/L	3	17	<1
Dissolved Cobalt	ug/L	3	16	<1
Dissolved Copper	ug/L	3	17	<1
Dissolved Europium	ug/L	3	16	<1
Dissolved Gallium	ug/L	3	16	<1
Dissolved Inorganic Carbon	mg/L	1.2	4	<0.4
Dissolved Iron	ug/L	60	17	<20
Dissolved Lanthanum	ug/L	3	16	<1
Dissolved Lead	ug/L	3	16	<1
Dissolved Lithium	ug/L	15	16	<5
Dissolved Magnesium	ug/L	12	16	<4
Dissolved Manganese	ug/L	3	17	<1
Dissolved Mercury	ug/L	0.3	16	<0.1
Dissolved Molybdenum	ug/L	3	17	<1
Dissolved Nickel	ug/L	3	17	<1
Dissolved Niobium	ug/L	3	16	<1

Parameter	Unit	Required Limit	Number Of Blanks	Mean Blank Result
Dissolved Organic Carbon	mg/L	1.2	18	<0.4
Dissolved Phosphorus	ug/L	150	16	<50
Dissolved Potassium	ug/L	300	16	<100
Dissolved Radium-226	Bq/L	0.007	18	<0.007
Dissolved Rubidium	ug/L	3	16	<1
Dissolved Scandium	ug/L	3	16	<1
Dissolved Selenium	ug/L	0.6	16	<0.2
Dissolved Silicon	ug/L	1800	16	<600
Dissolved Silver	ug/L	0.3	16	<0.1
Dissolved Sodium	ug/L	300	16	<100
Dissolved Strontium	ug/L	3	16	<1
Dissolved Sulfur	ug/L	2400	16	<800
Dissolved Tellurium	ug/L	3	16	<1
Dissolved Thallium	ug/L	3	16	<1
Dissolved Thorium	ug/L	3	16	<1
Dissolved Tin	ug/L	3	16	<1
Dissolved Titanium	ug/L	3	16	<1
Dissolved Tungsten	ug/L	3	16	<1
Dissolved Uranium	ug/L	3	16	<1
Dissolved Vanadium	ug/L	3	16	<1
Dissolved Yttrium	ug/L	3	16	<1
Dissolved Zinc	ug/L	3	17	<1
Dissolved Zirconium	ug/L	3	16	<1
Fluoride	mg/L	0.15	35	<0.05
M-Alkalinity (pH 4.5)	mg/L as CaCO3	6	14	2.552
Nitrate (as N)	mg/L	0.15	35	<0.05
Nitrite (as N)	mg/L	0.15	35	<0.05
Radium-226	Bq/L	0.007	8	<0.007
Radium-226	Bq/L	0.007	9	<0.007
Sulphate	mg/L	1.5	35	<0.5
Total Aluminum	ug/L	3	21	2.717
Total Antimony	ug/L	1.5	20	<0.5
Total Arsenic	ug/L	3	20	<1
Total Barium	ug/L	3	29	<1

Parameter	Unit	Required Limit	Number Of Blanks	Mean Blank Result
Total Beryllium	ug/L	3	20	<1
Total Bismuth	ug/L	3	20	<1
Total Boron	ug/L	5	21	3.718
Total Cadmium	ug/L	0.3	20	<0.1
Total Calcium	ug/L	150	20	<50
Total Cerium	ug/L	3	20	<1
Total Cesium	ug/L	3	20	<1
Total Chromium	ug/L	3	20	<1
Total Cobalt	ug/L	3	20	<1
Total Copper	ug/L	3	23	<1
Total Dissolved Solids	mg/L	50	3	<20
Total Europium	ug/L	3	20	<1
Total Gallium	ug/L	3	20	<1
Total Iron	ug/L	60	21	<20
Total Lanthanum	ug/L	3	20	<1
Total Lead	ug/L	1	20	<0.5
Total Lithium	ug/L	10	20	<5
Total Magnesium	ug/L	12	20	<4
Total Manganese	ug/L	3	20	<1
Total Mercury	ug/L	0.3	20	<0.1
Total Molybdenum	ug/L	3	20	<1
Total Nickel	ug/L	3	22	<1
Total Niobium	ug/L	3	20	<1
Total Organic Carbon	mg/L	1.2	1	<0.4
Total Phosphorus	ug/L	150	20	<50
Total Potassium	ug/L	300	20	<100
Total Rubidium	ug/L	3	20	<1
Total Scandium	ug/L	3	20	<1
Total Selenium	ug/L	0.6	20	<0.2
Total Silicon	ug/L	1800	20	<600
Total Silver	ug/L	0.3	20	<0.1
Total Sodium	ug/L	300	20	<100
Total Strontium	ug/L	3	20	<1
Total Sulphur	ug/L	2400	20	<800

Parameter	Unit	Required Limit	Number Of Blanks	Mean Blank Result
Total Suspended Solids	mg/L	10	22	<0.67
Total Tellurium	ug/L	3	20	<1
Total Thallium	ug/L	3	20	<1
Total Thorium	ug/L	3	20	<1
Total Tin	ug/L	3	20	<1
Total Titanium	ug/L	3	20	<1
Total Tungsten	ug/L	3	20	<1
Total Uranium	ug/L	3	20	<1
Total Vanadium	ug/L	3	20	<1
Total Yttrium	ug/L	3	20	<1
Total Zinc	ug/L	3	21	<1
Total Zirconium	ug/L	3	20	<1

4.2. Reference Material/Spiked Blank Data

This subset represents QC checks that report in % Recovery.

Parameter	Unit	Number of RM or SB	% Recovery
Bromide	%	70	99.1
Chloride	%	70	104.5
Dissolved Aluminum	%	16	104.7
Dissolved Antimony	%	16	105.2
Dissolved Arsenic	%	16	102.8
Dissolved Barium	%	23	101.2
Dissolved Beryllium	%	16	100.7
Dissolved Boron	%	17	111.9
Dissolved Cadmium	%	16	99.8
Dissolved Calcium	%	16	96.9
Dissolved Chromium	%	17	101.6
Dissolved Cobalt	%	16	101.8
Dissolved Copper	%	17	98
Dissolved Iron	%	17	104
Dissolved Lead	%	16	102
Dissolved Magnesium	%	16	94.6
Dissolved Manganese	%	17	99.5
Dissolved Mercury	%	16	91
Dissolved Molybdenum	%	17	99.1

Parameter	Unit	Number of RM or SB	% Recovery
Dissolved Nickel	%	17	98.7
Dissolved Phosphorus	%	16	98.8
Dissolved Potassium	%	16	98.2
Dissolved Selenium	%	16	100.8
Dissolved Silicon	%	16	98.8
Dissolved Sodium	%	16	95.6
Dissolved Sulfur	%	16	103.6
Dissolved Thallium	%	16	101.3
Dissolved Uranium	%	16	105.6
Dissolved Vanadium	%	16	101.9
Dissolved Zinc	%	17	100.1
Fluoride	%	70	100.5
Nitrate (as N)	%	70	103.6
Nitrite (as N)	%	70	107.2
Sulphate	%	70	103
Total Aluminum	%	21	109.3
Total Antimony	%	20	100.5
Total Arsenic	%	20	98.5
Total Barium	%	29	102.6
Total Beryllium	%	20	97.6
Total Boron	%	21	113.4
Total Cadmium	%	20	96.7
Total Calcium	%	20	98.1
Total Chromium	%	20	104.9
Total Cobalt	%	20	104.7
Total Copper	%	23	102.5
Total Iron	%	21	116.5
Total Lead	%	20	102.6
Total Magnesium	%	20	97.7
Total Manganese	%	20	105.1
Total Mercury	%	20	84
Total Molybdenum	%	20	104.7
Total Nickel	%	22	102.3
Total Phosphorus	%	20	97.3
Total Potassium	%	20	103.1

Parameter	Unit	Number of RM or SB	% Recovery
Total Selenium	%	20	92.1
Total Silicon	%	20	105.5
Total Sodium	%	20	98.5
Total Sulphur	%	20	102.8
Total Thallium	%	20	102.3
Total Uranium	%	20	109.6
Total Vanadium	%	20	105.2
Total Zinc	%	21	94.2

This subset represents QC checks that report in Specified Units.

Parameter	Unit	Number of RM or SB	Mean Result
Acidity	mg/L as CaCO3	18	104.706
Conductivity	μS/cm	7	509
Dissolved Aluminum	ug/L	16	102.011
Dissolved Antimony	ug/L	16	12.03
Dissolved Arsenic	ug/L	16	9.701
Dissolved Barium	ug/L	23	7.972
Dissolved Beryllium	ug/L	16	1.978
Dissolved Boron	ug/L	17	104.265
Dissolved Cadmium	ug/L	16	1.943
Dissolved Calcium	ug/L	16	530.329
Dissolved Chromium	ug/L	17	13.188
Dissolved Cobalt	ug/L	16	11.125
Dissolved Copper	ug/L	17	15.692
Dissolved Inorganic Carbon	mg/L	4	15.272
Dissolved Iron	ug/L	1	40.528
Dissolved Lead	ug/L	16	4.105
Dissolved Magnesium	ug/L	16	56.491
Dissolved Manganese	ug/L	17	5.968
Dissolved Molybdenum	ug/L	17	21.864
Dissolved Nickel	ug/L	17	19.184
Dissolved Organic Carbon	mg/L	18	15.282
Dissolved Potassium	ug/L	16	385.647
Dissolved Radium-226	Bq/L	36	0.049
Dissolved Selenium	ug/L	16	56.253

Parameter	Unit	Number of RM or SB	Mean Result
Dissolved Sodium	ug/L	16	235.877
Dissolved Strontium	ug/L	16	138.24
Dissolved Thallium	ug/L	16	6.171
Dissolved Uranium	ug/L	16	5.021
Dissolved Vanadium	ug/L	16	14.125
Dissolved Zinc	ug/L	17	41.759
M-Alkalinity (pH 4.5)	mg/L as CaCO3	14	99.63
рН	рН	7	8.047
Radium-226	Bq/L	34	0.05
RedOx (vs. S.H.E.)	mV	2	207.5
RedOx (vs. S.H.E.)	mV	2	247.9
Total Aluminum	ug/L	21	103.769
Total Antimony	ug/L	20	11.48
Total Arsenic	ug/L	20	9.303
Total Barium	ug/L	29	7.939
Total Beryllium	ug/L	20	1.888
Total Boron	ug/L	21	105.48
Total Cadmium	ug/L	20	1.867
Total Calcium	ug/L	20	532.541
Total Chromium	ug/L	20	13.833
Total Cobalt	ug/L	20	11.458
Total Copper	ug/L	23	16.628
Total Dissolved Solids	mg/L	1	230
Total Dissolved Solids	mg/L	2	235
Total Iron	ug/L	1	48.064
Total Lead	ug/L	20	4.114
Total Magnesium	ug/L	20	55.53
Total Manganese	ug/L	20	6.331
Total Molybdenum	ug/L	20	22.953
Total Nickel	ug/L	22	19.497
Total Organic Carbon	mg/L	1	14.351
Total Potassium	ug/L	20	392.14
Total Selenium	ug/L	20	50.738
Total Sodium	ug/L	20	246.54
Total Strontium	ug/L	20	144.139

Parameter	Unit	Number of RM or SB	Mean Result
Total Suspended Solids	mg/L	1	260
Total Suspended Solids	mg/L	22	234.55
Total Thallium	ug/L	20	6.169
Total Uranium	ug/L	20	5.258
Total Vanadium	ug/L	20	14.746
Total Zinc	ug/L	21	38.688

4.3. Duplicate Data

Parameter	Unit	Relative Percent Difference Limit	Number Of Duplicates	Relative Percent Difference
Acidity	mg/L as CaCO3	20	1	0
Chloride	%	20	24	1.66
Conductivity	%	20	7	0.8
Dissolved Aluminum	%	20	8	6.3
Dissolved Antimony	%	20	1	0
Dissolved Arsenic	%	20	1	5
Dissolved Barium	%	20	22	2.27
Dissolved Boron	%	20	8	3.15
Dissolved Calcium	%	20	16	1.65
Dissolved Cobalt	%	20	2	1.75
Dissolved Copper	%	20	1	2.7
Dissolved Gallium	%	20	2	0
Dissolved Inorganic Carbon	%	15	4	0.45
Dissolved Iron	%	20	2	2.9
Dissolved Magnesium	%	20	16	1.74
Dissolved Manganese	%	20	12	2.32
Dissolved Molybdenum	%	20	2	9.5
Dissolved Nickel	%	20	1	1.4
Dissolved Organic Carbon	%	15	7	1
Dissolved Potassium	%	20	14	1.34
Dissolved Radium-226	%	20	18	7.37
Dissolved Rubidium	%	20	6	2.03
Dissolved Selenium	%	20	1	9.8
Dissolved Sodium _	% _	.20	16	2.33
Dissolved Strontium	%	20	16	2.69

Parameter	Unit	Relative Percent Difference Limit	Number Of Duplicates	Relative Percent Difference
Dissolved Sulfur	%	20	14	3.73
Dissolved Tungsten	%	20	2	1.25
Dissolved Uranium	%	20	5	0.82
Fluoride	%	20	1	0
M-Alkalinity (pH 4.5)	%	20	10	5.1
Nitrate (as N)	%	20	6	3.82
рН	%	0.2	7	0.06
Radium-226	%	20	17	6.7
RedOx (vs. S.H.E.)	%	20	4	0.63
Sulphate	%	20	30	1.31
Total Aluminum	%	20	16	5.56
Total Barium	%	20	27	4.02
Total Boron	%	20	12	2.28
Total Calcium	%	20	18	3.24
Total Cobalt	%	20	3	3.37
Total Copper	%	20	3	1.07
Total Dissolved Solids	%	20	2	1.95
Total Gallium	%	20	3	1.27
Total Iron	%	20	7	2.89
Total Magnesium	%	20	18	1.7
Total Manganese	%	20	13	3.05
Total Molybdenum	%	20	2	4.25
Total Nickel	%	20	2	4.3
Total Organic Carbon	%	15	1	0
Total Phosphorus	%	20	1	0.4
Total Potassium	%	20	15	2.28
Total Rubidium	%	20	6	2
Total Selenium	%	20	3	6.9
Total Sodium	%	20	16	2.24
Total Strontium	%	20	18	2.19
Total Sulphur	%	20	15	3.01
Total Suspended Solids	%	20	7	3.64
Total Tungsten	%	20	1	0.8
Total Uranium	%	20	5	0.96

Parameter	Unit	Relative Percent Difference Limit	Number Of Duplicates	Relative Percent Difference
Total Zinc	%	20	2	3.1

4.4. Spike Duplicate Data

Parameter	Unit	Number Of Spike Duplicates	Mean % Recovery
Bromide	%	35	100.4
Chloride	%	35	99.9
Dissolved Aluminum	%	16	101.1
Dissolved Antimony	%	16	103.4
Dissolved Arsenic	%	16	104.4
Dissolved Barium	%	23	102.3
Dissolved Beryllium	%	16	102.8
Dissolved Cadmium	%	16	101.1
Dissolved Chromium	%	17	101.6
Dissolved Cobalt	%	16	101.7
Dissolved Copper	%	17	94.9
Dissolved Inorganic Carbon	%	4	104.5
Dissolved Iron	%	17	95.5
Dissolved Lead	%	16	95.3
Dissolved Manganese	%	17	100.1
Dissolved Molybdenum	%	17	86.5
Dissolved Nickel	%	17	98
Dissolved Organic Carbon	%	18	106.5
Dissolved Radium-226	%	18	95.8
Dissolved Selenium	%	16	106.5
Dissolved Thallium	%	16	101.1
Dissolved Vanadium	%	16	98.5
Dissolved Zinc	%	17	106.4
Fluoride	%	35	102.8
Nitrate (as N)	%	35	103.6
Nitrite (as N)	%	35	101
Radium-226	%	17	97.1
Sulphate	%	35	100.3
Total Aluminum	%	20	104.7
Total Antimony	%	19	100

Parameter	Unit	Number Of Spike Duplicates	Mean % Recovery
Total Arsenic	%	19	99.4
Total Barium	%	28	102.2
Total Beryllium	%	19	100
Total Cadmium	%	19	97.4
Total Chromium	%	19	106.9
Total Cobalt	%	19	105.4
Total Copper	%	22	99
Total Iron	%	20	100
Total Lead	%	19	100.3
Total Manganese	%	19	103.7
Total Molybdenum	%	19	99.8
Total Nickel	%	21	101.5
Total Organic Carbon	%	1	100.4
Total Selenium	%	19	93.7
Total Thallium	%	19	101.8
Total Vanadium	%	19	106.7
Total Zinc	%	20	96.7

4.5. QC Frequency

QC Type	Total Number
Blank Data	2057
Duplicate Data	520
Reference Material / Spiked Blank Data	2527
Spike Duplicate Data	929
Total QC Data Points	6033
Total Sample Parameters Analyzed	8543
Percentage of QC to Analyzed Parameters	70.6%

APPENDIX V Water Quality Results

BSDST: Blind Sample for D								
Date	FLOW L/s	pН	SO4 mg/L	TSS mg/L	Ra Bq/L	Ba mg/L	Co mg/L	Fe mg/L
2024-01-09	21.00	7.3	300.0	<1	0.024	0.063	0.0005	0.45
2024-02-06	17.00	7.4	300.0	1	0.018	0.055	0.0004	0.57
2024-03-05	86.00	7.2	250.0	2	0.041	0.084	0.0007	0.63
2024-04-02	101.00	7.2	130.0	3	0.270	0.963	0.0005	0.66
2024-05-08	137.00	7.5	170.0	2	0.095	0.583	0.0004	0.33
2024-06-18	14.00	7.2	200.0	1	0.039	0.231	0.0002	0.22
2024-07-16	21.00	7.4	200.0	1	0.035	0.162	0.0002	0.20
2024-08-06	17.00	7.5	220.0	1	< 0.005	0.133	0.0002	0.29
2024-09-03	13.00	7.2	230.0	<1	0.044	0.117	0.0002	0.25
2024-10-01	10.00	7.4	259.0	1	0.023	0.102	0.0004	0.45
2024-11-05		7.6	286.0	<1	0.051	0.088	0.0005	0.48
2024-12-03	17.00	7.4	251.0	<1	0.040	0.080	0.0005	0.59
	4.0		40	4.0		40	40	
Count	12	13	12	12	12	12	12	12
High	137.00	7.6	300.0	3	0.270	0.963	0.0007	0.66
Low	10.00	7.0	130.0	<1	<0.005	0.055	0.0002	0.20
Mean	42.42	7.3	233.0	1	0.057	0.222	0.0004	0.43
High Criteria		8.5	128-429		0.469	1.000	0.0025	0.76
Low Criteria		6.5						
Criteria Ex	0	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%	0%
10x Criteria Ex	0	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%	0%
Date	Mn	U	hard					
Duto	mg/L	mg/L	mg/L					
2024-01-09	0.188	0.0442	352.0					
2024-02-06	0.188	0.0437	353.0					
2024-03-05	0.275	0.0431	308.0					
2024-04-02	0.140	0.0160	188.0					
2024-05-08	0.144	0.0271	220.0					
2024-06-18	0.077	0.0268	239.0					
2024-07-16	0.082	0.0240	269.0					
2024-08-06	0.065	0.0270	249.0					
2024-09-03	0.082	0.0308	275.0					
2024-10-01	0.104	0.0370	316.0					
2024-11-05	0.145	0.0450	310.0					
2024-12-03	0.115	0.0360	322.0					
Count	12	12	12					
High	0.275	0.0450	353.0					
Low	0.065	0.0160	188.0					
Mean	0.134	0.0334	283.4					
High Criteria	0.841	0.0150	0					
Criteria Ex	0	12	0					
Frequency	0%	100%	0%					
10x Criteria Ex	0	0	0					
Frequency	0%	0%	0%					

Printed on 2/13/2025 Page 1 of 37

BSDST2: Blind Sample for DS-2

Date	ACID mg/L	pH
2024-01-03	213	2.9
2024-04-02	223	3.0
2024-07-02	223	2.7
2024-11-12	188	2.7
Count	4	4
High	223	3.0
Low	188	2.7
Mean	212	2.8
Lim Ex	0	0
Frequency	0%	0%
10x Lim Ex	0	0
Frequency	0%	0%

Printed on 2/13/2025 Page 2 of 37

D-1: Denison TMA-1 Overflow Date	(Influent and ETP Opera ACID mg/L	ntions) BaCl2T kg/month	ELEV m	FLOW L/s	NaOHT kg/month	ODays day	рН	SO4 mg/L
2024-01-01			206.05	0.00				
2024-01-02 2024-01-03			386.85	0.00 0.00				
2024-01-04				0.00				
2024-01-05 2024-01-06				0.00 0.00				
2024-01-07				0.00				
2024-01-08			000.00	0.00			0.0	
2024-01-09 2024-01-10			386.86	0.00 0.00			8.2	
2024-01-11				0.00				
2024-01-12 2024-01-13				0.00 0.00				
2024-01-14				0.00				
2024-01-15			386.89	0.00				
2024-01-16 2024-01-17			300.09	0.00 0.00				
2024-01-18				0.00				
2024-01-19 2024-01-20				0.00 0.00				
2024-01-21				0.00				
2024-01-22 2024-01-23			386.89	0.00 0.00				
2024-01-24			300.09	0.00				
2024-01-25				0.00				
2024-01-26 2024-01-27				0.00 0.00				
2024-01-28				0.00				
2024-01-29 2024-01-30		0.00	386.89	0.00 0.00	0.00	0		
2024-01-31				0.00				
2024-02-01 2024-02-02				0.00 0.00				
2024-02-02				0.00				
2024-02-04				0.00				
2024-02-05 2024-02-06			386.89	0.00 0.00			7.7	
2024-02-07				0.00				
2024-02-08 2024-02-09				0.00 0.00				
2024-02-10				0.00				
2024-02-11 2024-02-12				0.00 0.00				
2024-02-13			386.90	0.00				
2024-02-14 2024-02-15				0.00 0.00				
2024-02-16				0.00				
2024-02-17				0.00				
2024-02-18 2024-02-19				0.00 0.00				
2024-02-20			386.93	0.00				
2024-02-21 2024-02-22				0.00 0.00				
2024-02-23				0.00				
2024-02-24 2024-02-25				0.00 0.00				
2024-02-26				0.00				
2024-02-27 2024-02-28		0.00	386.92	0.00 0.00	0.00	0		
2024-02-29		0.00		0.00	0.00	Ü		
2024-03-01 2024-03-02				0.00 0.00				
2024-03-02				0.00				
2024-03-04 2024-03-05	<1		386.98	29.00 30.00			7.4	44.0
2024-03-06	~1		300.90	30.00			7.4	44.0
2024-03-07				30.00				
2024-03-08 2024-03-09				29.00 30.00				
2024-03-10				30.00				
2024-03-11 2024-03-12			387.02	29.00 29.95				
2024-03-13				30.00				
2024-03-14 2024-03-15				30.00 30.00				
2024-03-16				30.00				
2024-03-17 2024-03-18				30.00 30.00				
2024-03-19			387.04	30.00				
2024-03-20 2024-03-21				29.00 55.00				
2024-03-21				55.00				
2024-03-23				55.00				
2024-03-24 2024-03-25				55.00 55.00				
2024-03-26			387.03	54.00				
2024-03-27 2024-03-28		1396.26		89.00 88.00	0.00	28		
2024-03-29				88.00		-		
2024-03-30 2024-03-31				89.00 89.00				
2024-04-01				89.00				
2024-04-02 2024-04-03	<1		387.04	89.00 90.00			7.5	47.0
2024-04-04				90.00				
2024-04-05 2024-04-06				90.00 90.00				
2024-04-07				88.00				
2024-04-08 2024-04-09			387.05	88.00 89.00				
2024-04-10			001.00	88.00				

Printed on 2/13/2025 Page 3 of 37

D-1: Denison TMA-1 Overflo	ACID	ations) BaCl2T	ELEV	FLOW	NaOHT	ODays	рН	SO4
2024 04 44	mg/L	kg/month	m	L/s	kg/month	day		mg/L
2024-04-11 2024-04-12				88.00 91.00				
2024-04-12				113.00				
2024-04-14				113.00				
2024-04-15				114.00				
2024-04-16			387.11	114.00				
2024-04-17				113.00				
2024-04-18				119.00				
2024-04-19 2024-04-20				120.00 118.00				
2024-04-21				117.00				
2024-04-22				116.00				
2024-04-23			387.10	117.00				
2024-04-24				115.00				
2024-04-25				116.00				
2024-04-26 2024-04-27				117.00 116.00				
2024-04-28		3425.89		116.00	0.00	30		
2024-04-29				114.00				
2024-04-30			387.12	116.00				
2024-05-01				116.00				
2024-05-02				116.00				
2024-05-03 2024-05-04				118.00 119.00				
2024-05-05				117.00				
2024-05-06				117.00				
2024-05-07				118.00				
2024-05-08			207.44	117.00			0.0	
2024-05-09 2024-05-10			387.11	117.00 117.00			8.0	
2024-05-10				51.00				
2024-05-12				51.00				
2024-05-13				51.00				
2024-05-14			387.08	51.00				
2024-05-15				51.00				
2024-05-16 2024-05-17				51.00 50.00				
2024-05-18				51.00				
2024-05-19				51.00				
2024-05-20				51.00				
2024-05-21			387.05	33.00				
2024-05-22 2024-05-23				32.00				
2024-05-24				33.00 33.00				
2024-05-25				0.00				
2024-05-26				0.00				
2024-05-27				0.00				
2024-05-28		1932.15	387.02	0.00	0.00	24		
2024-05-29 2024-05-30				0.00 0.00				
2024-05-31				0.00				
2024-06-01				0.00				
2024-06-02				0.00				
2024-06-03			000.00	0.00			0.5	
2024-06-04			386.99	0.00 0.00			8.5	
2024-06-05 2024-06-06				0.00				
2024-06-07				0.00				
2024-06-08				0.00				
2024-06-09				0.00				
2024-06-10			206.00	0.00				
2024-06-11 2024-06-12			386.98	0.00 0.00				
2024-06-13				0.00				
2024-06-14				0.00				
2024-06-15				0.00				
2024-06-16				0.00				
2024-06-17 2024-06-18			386.96	0.00 0.00				
2024-06-19				0.00				
2024-06-20				0.00				
2024-06-21				0.00				
2024-06-22 2024-06-23				0.00 0.00				
2024-06-24				0.00				
2024-06-25			386.99	0.00				
2024-06-26				0.00				
2024-06-27		0.00		0.00	0.00	0		
2024-06-28 2024-06-29		0.00		0.00 0.00	0.00	0		
2024-06-30				0.00				
2024-07-01				0.00				
2024-07-02				0.00				
2024-07-03			387.02	0.00				
2024-07-04 2024-07-05				0.00 0.00				
2024-07-06				0.00				
2024-07-07				0.00				
2024-07-08				0.00				
2024-07-09			207.04	0.00				
2024-07-10 2024-07-11			387.01	0.00 0.00				
2024-07-11				0.00				
2024-07-13				0.00				
2024-07-14				0.00				
2024-07-15			207.22	0.00			0.4	
2024-07-16 2024-07-17			387.00	0.00 0.00			9.1	
2024-07-17				0.00				
2024-07-19				0.00				
2024-07-20				0.00				
2024-07-21				0.00				

Printed on 2/13/2025 Page 4 of 37

D-1: Denison TMA-	1 Overflow (Influent and ETF	P Operations)						
	ACID	BaCl2T	ELEV	FLOW	NaOHT	ODays	pН	SO4
2024-07-22	mg/L	kg/month	m 386.97	L/s 0.00	kg/month	day		mg/L
2024-07-23				0.00				
2024-07-24				0.00				
2024-07-25 2024-07-26				0.00 0.00				
2024-07-27				0.00				
2024-07-28				0.00		_		
2024-07-29 2024-07-30		0.00	386.94	0.00 0.00	0.00	0		
2024-07-30			360.94	0.00				
2024-08-01				0.00				
2024-08-02				0.00				
2024-08-03 2024-08-04				0.00 0.00				
2024-08-05				0.00				
2024-08-06			386.91	0.00				
2024-08-07				0.00				
2024-08-08 2024-08-09				0.00 0.00				
2024-08-10				0.00				
2024-08-11				0.00				
2024-08-12 2024-08-13			386.88 386.88	0.00 0.00			8.6	
2024-08-14			300.00	0.00				
2024-08-15				0.00				
2024-08-16				0.00				
2024-08-17 2024-08-18				0.00 0.00				
2024-08-19				0.00				
2024-08-20			386.86	0.00				
2024-08-21				0.00				
2024-08-22 2024-08-23				0.00 0.00				
2024-08-24				0.00				
2024-08-25				0.00				
2024-08-26			000.04	0.00				
2024-08-27 2024-08-28		0.00	386.84	0.00 0.00	0.00	0		
2024-08-29		0.00		0.00	0.00	Ŭ		
2024-08-30				0.00				
2024-08-31 2024-09-01				0.00 0.00				
2024-09-01				0.00				
2024-09-03			386.82	0.00				
2024-09-04				0.00				
2024-09-05 2024-09-06				0.00 0.00				
2024-09-07				0.00				
2024-09-08				0.00				
2024-09-09			000.00	0.00				
2024-09-10			386.80	0.00				
2024-09-11 2024-09-12				0.00 0.00				
2024-09-13				0.00				
2024-09-14				0.00				
2024-09-15 2024-09-16				0.00 0.00				
2024-09-17			386.78	0.00				
2024-09-18				0.00				
2024-09-19 2024-09-20				0.00 0.00				
2024-09-20				0.00				
2024-09-22				0.00				
2024-09-23	<1		386.78	0.00			8.6	5.1
2024-09-24 2024-09-25				0.00 0.00				
2024-09-26		0.00		0.00	0.00	0		
2024-09-27				0.00				
2024-09-28				0.00				
2024-09-29 2024-09-30				0.00 0.00				
2024-10-01			386.77	0.00				
2024-10-02				0.00				
2024-10-03 2024-10-04				0.00 0.00				
2024-10-05				0.00				
2024-10-06			_	0.00				
2024-10-07			386.77	0.00 0.00				
2024-10-08 2024-10-09				0.00				
2024-10-10				0.00				
2024-10-11				0.00				
2024-10-12 2024-10-13				0.00 0.00				
2024-10-13				0.00				
2024-10-15			386.75	0.00				
2024-10-16				0.00				
2024-10-17 2024-10-18				0.00 0.00				
2024-10-19				0.00				
2024-10-20				0.00				
2024-10-21			38E 73	0.00				
2024-10-22 2024-10-23			386.73	0.00 0.00				
2024-10-24				0.00				
2024-10-25				0.00				
2024-10-26 2024-10-27				0.00 0.00				
2024-10-27				29.00				
2024-10-29			386.72	27.00			7.6	
2024-10-30 2024-10-31		126.54		26.00 26.91	0.00	4		
EUE-T-10*U1		120.04		20.31	0.00	7		

Printed on 2/13/2025 Page 5 of 37

D-1: Denison TMA-1 Overflow	(Influent and ETP Oper	rations)						
	ACID mg/L	BaCI2T	ELEV	FLOW	NaOHT kg/month	ODays	рН	SO4
2024-11-01	mg/L <5	kg/month	m 386.78	L/s 29.00	kg/month	day	7.7	mg/L 60.4
2024-11-02				0.00				
2024-11-03 2024-11-04				0.00 0.00				
2024-11-05			386.80	0.00				
2024-11-06				0.00				
2024-11-07 2024-11-08				0.00 0.00				
2024-11-09				0.00				
2024-11-10				0.00				
2024-11-11 2024-11-12			386.83	0.00 0.00				
2024-11-13			300.03	0.00				
2024-11-14				0.00				
2024-11-15 2024-11-16				0.00 0.00				
2024-11-17				0.00				
2024-11-18				0.00				
2024-11-19 2024-11-20			386.83	0.00 0.00				
2024-11-21				0.00				
2024-11-22				0.00				
2024-11-23				0.00				
2024-11-24 2024-11-25				0.00 0.00				
2024-11-26			386.85	0.00				
2024-11-27		00.00		0.00	0.00	4		
2024-11-28 2024-11-29		28.86		0.00 0.00	0.00	1		
2024-11-30				0.00				
2024-12-01				0.00				
2024-12-02 2024-12-03			386.85	0.00 0.00				
2024-12-03			300.03	0.00				
2024-12-05				0.00				
2024-12-06 2024-12-07				0.00 0.00				
2024-12-07				0.00				
2024-12-09				0.00				
2024-12-10			386.89	0.00				
2024-12-11 2024-12-12				0.00 0.00				
2024-12-13				0.00				
2024-12-14				0.00				
2024-12-15 2024-12-16			386.89	0.00 0.00			7.8	
2024-12-17			300.03	0.00			7.0	
2024-12-18			386.91	0.00				
2024-12-19 2024-12-20				0.00 0.00				
2024-12-20				0.00				
2024-12-22				0.00				
2024-12-23			386.91	0.00				
2024-12-24 2024-12-25				0.00 0.00				
2024-12-26				0.00				
2024-12-27				0.00				
2024-12-28 2024-12-29				0.00				
2024-12-29 2024-12-30				0.00 0.00				
2024-12-31		0.00	386.96	0.00	0.00	0		
Count	4	12	56	374	12	12	12	4
High	- <5	3425.89	387.12	120.00	0.00	30	9.1	60.4
Low	<1	0.00	386.72	0.00	0.00	0	7.4	5.1
Mean	<2	575.81	386.92	17.11	0.00	7	8.1	39.1
High Criteria							8.5	128-429
Low Criteria		_	_	_	_	_	6.5	
Criteria Ex Frequency	0 0%	0 0%	0 0%	0 0%	0 0%	0 0%	3 25%	0 0%
10x Criteria Ex	0	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%	0%
D-1: Denison TMA-1 Overflow	(Influent and ETP Oper	rations)						
Date	Ra Bq/L	Ba mg/L	Co mg/L	Fe mg/L	Mn mg/L	U mg/L	hard mg/L	
2024-01-09	1.660	9.2	g.=	9-	9-=	9/2	•	
2024-02-06	1.600	0.040	0.0004	0.00	0.040	0.0000	00.0	
2024-03-05 2024-04-02	1.210 1.570	0.213 0.068	0.0001 0.0001	0.06 0.06	0.010 0.006	0.0089 0.0081	82.6 88.0	
2024-05-09	1.420	0.000	0.000	0.00	0.000	0.0001	00.0	
2024-06-04	2.270							
2024-07-16 2024-08-12	1.450 1.380							
2024-08-12	1.720	0.072	0.0001	0.03	0.018	0.0063	80.4	
2024-10-29	1.600							
2024-11-01	1.690	0.070	0.0001	0.14	0.008	0.0070	90.0	
2024-12-16	1.570							
Count	12	4	4	4	4	4	4	
High	2.270	0.213	0.0001	0.14	0.018	0.0089	90.0	
Low Mean	1.210 1.595	0.068 0.106	0.0001 0.0001	0.03 0.07	0.006 0.011	0.0063 0.0076	80.4 85.3	
= === :						2.00.0	55.5	
High Criteria	0.469	1.000	0.0025	0.76	0.841	0.0150	0	
Criteria Ex Frequency	12 100%	0 0%	0 0%	0 0%	0 0%	0 0%	0 0%	
10x Criteria Ex	0	0	0	0	0	0	0	
Frequency	0%	0%	0%	0%	0%	0%	0%	

Printed on 2/13/2025 Page 6 of 37

Part PLOW Bard PH SO4 Ra Ba Co Fe mg/L	D-16: Denison TMA-1 D								
2024-01-04	Date	FLOW	hard	pН	SO4	Ra	Ва	Co	Fe
2024-04-02	0004.04.04			0.0					
2024-07-11									
2024-10-22									
Count 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4									
High 1.72 316.0 6.7 292.0 0.037 0.035 0.0019 8.35 Low 0.17 188.0 6.3 160.0 0.011 0.021 0.0004 0.27 Mean 0.79 253.0 6.4 215.5 0.026 0.025 0.0011 3.22 High Criteria 8.5 128-429 0.469 1.000 0.0025 0.76 Low Criteria 6.5 128-429 0.469 1.000 0.0025 0.76 Criteria Ex 0 0 3 0 0 0 0 2 Frequency 0% 0% 75% 0% 0% 0% 0% 50% Date Mn umgl. umgl	2024-10-22	0.17	316.0	6.3	292.0	0.037	0.035	0.0019	8.35
Low 0.17	Count	4	4	4	4	4	4	4	4
Mean 0.79 253.0 6.4 215.5 0.026 0.025 0.0011 3.22 High Criteria 8.5 128-429 0.469 1.000 0.0025 0.76 Low Criteria 0 0 3 0 0 0 0 2 Criteria Ex 0 0% 0% 0% 0% 0% 0% 50% 10x Criteria Ex 0	High	1.72	316.0	6.7	292.0	0.037	0.035	0.0019	8.35
High Criteria Low Criteria 6.5 Count 4 4 4 High 3.340 0.0001 0.00	Low	0.17	189.0	6.3	160.0	0.011	0.021	0.0004	0.27
Criteria Ex	Mean	0.79	253.0	6.4	215.5	0.026	0.025	0.0011	3.22
Criteria Ex	High Criteria			8.5	128_420	0.469	1 000	0.0025	0.76
Criteria Ex 0 0 3 0 0 0 0 2 Frequency 0% 0% 0% 0% 0% 0% 0% 50% 10x Criteria Ex 0 0 0 0 0 0 0 0 0 0 1 1 Frequency 0%					120-423	0.403	1.000	0.0023	0.70
Frequency 0% 0% 75% 0% 0% 0% 0% 50% 10x Criteria Ex 0 0 0 0 0 0 0 0 1 Frequency 0% <th></th> <th>Λ</th> <th>0</th> <th></th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>2</th>		Λ	0		0	0	0	0	2
10x Criteria Ex 0 0 0 0 0 0 0 0 1 Frequency 0% 0% 0% 0% 0% 0% 25% Date Mn mg/L mg/L mg/L 0.0000 0 0 0 0 0 0% 25% 2024-01-04 0.436 0.0000 0.2024-04-02 0.537 0.0000 0.2024-07-11 0.0001 0.0001 0.0001 0.0000 0.000									
Date Min U mg/L									
Date Mn mg/L mg/L mg/L 2024-01-04 0.436 0.0000 2024-04-02 0.537 0.0000 2024-07-11 1.810 0.0001 2024-10-22 3.340 <0.0010 Count 4 4 High 3.340 <0.0010 Low 0.436 0.0000 Mean 1.531 0.0003 High Criteria 0.841 0.0150 Criteria Ex 2 0 Frequency 50% 0%									
mg/L mg/L 2024-01-04 0.436 0.0000 2024-04-02 0.537 0.0000 2024-07-11 1.810 0.0001 2024-10-22 3.340 <0.0010 Count 4 4 High 3.340 <0.0010 Low 0.436 0.0000 Mean 1.531 0.0003 High Criteria 0.841 0.0150 Criteria Ex 2 0 Frequency 50% 0%	requeriey	070	070	070	070	070	070	070	2570
2024-01-04 0.436 0.0000 2024-04-02 0.537 0.0000 2024-07-11 1.810 0.0001 2024-10-22 3.340 <0.0010 Count 4 4 High 3.340 <0.0010 Low 0.436 0.0000 Mean 1.531 0.0003 High Criteria 0.841 0.0150 Criteria Ex 2 0 Frequency 50% 0%	Date								
2024-04-02 0.537 0.0000 2024-07-11 1.810 0.0001 2024-10-22 3.340 <0.0010 Count 4 4 High 3.340 <0.0010 Low 0.436 0.0000 Mean 1.531 0.0003 High Criteria 0.841 0.0150 Criteria Ex 2 0 Frequency 50% 0%									
2024-07-11 1.810 0.0001 2024-10-22 3.340 <0.0010 Count 4 4 High 3.340 <0.0010 Low 0.436 0.0000 Mean 1.531 0.0003 High Criteria 0.841 0.0150 Criteria Ex 2 0 Frequency 50% 0%									
2024-10-22 3.340 <0.0010 Count 4 4 High 3.340 <0.0010 Low 0.436 0.0000 Mean 1.531 0.0003 High Criteria 0.841 0.0150 Criteria Ex 2 0 Frequency 50% 0%									
Count 4 4 High 3.340 <0.0010 Low 0.436 0.0000 Mean 1.531 0.0003 High Criteria 0.841 0.0150 Criteria Ex 2 0 Frequency 50% 0%									
High 3.340 <0.0010 Low 0.436 0.0000 Mean 1.531 0.0003 High Criteria 0.841 0.0150 Criteria Ex 2 0 Frequency 50% 0%	2024-10-22	3.340	<0.0010						
Low 0.436 0.0000 Mean 1.531 0.0003 High Criteria 0.841 0.0150 Criteria Ex 2 0 Frequency 50% 0%	Count	4	4						
Mean 1.531 0.0003 High Criteria 0.841 0.0150 Criteria Ex 2 0 Frequency 50% 0%	High	3.340	< 0.0010						
High Criteria 0.841 0.0150 Criteria Ex 2 0 Frequency 50% 0%	Low	0.436	0.0000						
Criteria Ex 2 0 Frequency 50% 0%	Mean	1.531	0.0003						
Criteria Ex 2 0 Frequency 50% 0%	High Criteria	0.841	0.0150						
Frequency 50% 0%									
Frequency 0% 0%									

Printed on 2/13/2025 Page 7 of 37

D-2: Denison 1 W	DDays	ake Settling Pond C	Outlet (Final Dischar	ge) pH	SO4	TSS	TOXCD	TOXDM	TOXRT
Dute	day	(L/s)	mg/L	Pi.i	mg/L	mg/L	IC25	%	%
2024-01-02		21.00	· ·	7.3	· ·	<1			
2024-01-09		21.00	346.0	7.4	300.0	<1			
2024-01-16		29.00		7.5		1			
2024-01-23		21.00		7.5		<1			
2024-01-30	31	17.00		7.4		1			
2024-02-06		17.00	350.0	7.5	300.0	<1			
2024-02-13		21.00		7.1		3			
2024-02-20		21.00		7.2		1			
2024-02-28	29	39.00	343.0	7.3	320.0	1			
2024-03-05		86.00	293.0	7.2	260.0	2			
2024-03-12		55.00		7.0		1			
2024-03-19		60.00		7.1		<1			
2024-03-26		81.00		7.2		2			
2024-03-28	31								
2024-04-02		100.00	198.0	7.1	130.0	3			
2024-04-09		94.00		7.1		2			
2024-04-16		196.00		7.4		2			
2024-04-23		130.00		7.5		2			
2024-04-28	30								
2024-04-30		181.00		7.4		1			
2024-05-08		137.00	219.0	7.5	170.0	2			
2024-05-14		52.00		7.5		1			
2024-05-21		52.00		7.4		1			
2024-05-28	31	21.00		7.4		1			
2024-06-04		10.00		7.5		1			
2024-06-11		14.00		7.3		<1			
2024-06-18		14.00	243.0	7.2	210.0	1	3	0	0
2024-06-25		29.00		7.4		1			
2024-06-28	30								
2024-07-02		21.00		7.6		<1			
2024-07-11		17.00		7.6		1			
2024-07-16		21.00	260.0	7.4	190.0	1			
2024-07-22		21.00		7.5		<1			
2024-07-29	31								
2024-07-30		13.00		7.5		<1			
2024-08-06		17.00	255.0	7.5	220.0	1			
2024-08-12		13.00		7.5		1			
2024-08-20		13.00		7.4		1			
2024-08-27		10.00		7.7		<1			
2024-08-28	31								
2024-09-03		13.00	270.0	7.2	230.0	<1			
2024-09-10		13.00	288.0	7.3	230.0	1		0	0
2024-09-17		13.00		7.2		<1			
2024-09-23		13.00		7.4		<1			
2024-09-28	30								
2024-10-01		10.00	314.0	7.3	258.0	1	>100		
2024-10-08		10.00		7.6		<1			
2024-10-16		14.00		7.3		<1			
2024-10-22		10.00		7.4		<1			
2024-10-29		10.00		7.3		4			
2024-10-31	31								
2024-11-05		34.00	301.0	7.3	261.0	<1			
2024-11-12		21.00		7.3		<1			
2024-11-19		21.00		7.5		2			
2024-11-26		21.00		7.3		- <1			
2024-11-28	30	=::==				•			
2024-12-03		17.00	323.0	7.4	282.0	<1			
2024-12-10		25.00		7.4		3			
2024-12-18		29.00		7.3		<1			
2024-12-23		21.00		7.4		3			
2024-12-30		41.00		7.1		1			
2024-12-31	31					•			
	-								
Count	12	53	14	53	14	53	3	2	2
High	31	196.00	350.0	7.7	320.0	4	>100	0	0
Low	29	10.00	198.0	7.0	130.0	<1	3	0	0
Mean	31	37.75	285.9	7.4	240.1	1	51	0	0
		-			-		-	-	-
High Criteria				8.5	128-429				
Low Criteria				6.5					
Criteria Ex	0	0	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	0%
10x Criteria Ex	0	0	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%	0%	0%

Printed on 2/13/2025 Page 8 of 37

D-2: Denison TMA-1 S	Stollery Lake Settling Pond	Outlet (Final Dischar	rge)			
Date	Ra	Ва	Co	Fe	Mn 	U "
2024-01-02	Bq/L 0.009	mg/L	mg/L	mg/L	mg/L	mg/L
2024-01-09	0.031	0.062	0.0005	0.43	0.183	0.0437
2024-01-16	0.027					
2024-01-23	0.022					
2024-01-30	0.027					
2024-02-06	0.038	0.056	0.0005	0.60	0.191	0.0456
2024-02-13	0.020					
2024-02-20	0.026					
2024-02-28	0.031	0.065	0.0006	0.57	0.235	0.0425
2024-03-05 2024-03-12	0.066 0.141	0.073	0.0007	0.60	0.255	0.0401
2024-03-12	0.152					
2024-03-26	0.239					
2024-04-02	0.243	0.996	0.0005	0.67	0.140	0.0168
2024-04-09	0.186					
2024-04-16	0.152					
2024-04-23	0.096					
2024-04-30	0.095					
2024-05-08	0.122	0.576	0.0004	0.34	0.148	0.0270
2024-05-14	0.159					
2024-05-21 2024-05-28	0.056 0.055					
2024-06-04	0.068					
2024-06-11	0.049					
2024-06-18	0.035	0.220	0.0002	0.24	0.063	0.0269
2024-06-25	0.038					
2024-07-02	0.025					
2024-07-11	0.038					
2024-07-16	0.030	0.160	0.0001	0.18	0.066	0.0240
2024-07-22	0.032					
2024-07-30 2024-08-06	0.026 0.028	0.131	0.0001	0.02	0.036	0.0258
2024-08-12	0.022	0.131	0.0001	0.02	0.030	0.0230
2024-08-20	0.018					
2024-08-27	0.026					
2024-09-03	0.021	0.112	0.0002	0.25	0.083	0.0312
2024-09-10	0.039	0.106	0.0002	0.28	0.082	0.0321
2024-09-17	0.035					
2024-09-23	0.008					
2024-10-01	0.018	0.105	0.0004	0.47	0.108	0.0380
2024-10-08 2024-10-16	0.021 0.039					
2024-10-10	0.036					
2024-10-29	0.048					
2024-11-05	0.047	0.085	0.0005	0.46	0.142	0.0450
2024-11-12	0.052					
2024-11-19	0.044					
2024-11-26	0.053					
2024-12-03	0.033	0.083	0.0005	0.60	0.119	0.0350
2024-12-10	0.035					
2024-12-18 2024-12-23	0.029 0.031					
2024-12-30	0.031					
_322 00	0.001					
Count	53	14	14	14	14	14
High	0.243	0.996	0.0007	0.67	0.255	0.0456
Low	0.008	0.056	0.0001	0.02	0.036	0.0168
Mean	0.058	0.202	0.0004	0.41	0.132	0.0338
High Criteria	0.469	1.000	0.0025	0.76	0.841	0.0150
Criteria Ex	0.409	0	0.0023	0.70	0.041	14
Frequency	0%	0%	0%	0%	0%	100%
10x Criteria Ex	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%

Printed on 2/13/2025 Page 9 of 37

D-22: Denison TMA-2 E	TP (Influent and ETP Op	perations)						
Date	ACID mg/L	BaCl2T kg/month	ODays day	рН	SO4 mg/L	Ra Bq/L	Ba mg/L	Co mg/L
2024-01-02		g	,	6.2				
2024-01-09 2024-01-16	<1			6.5 6.6	160.0	0.214	0.035	0.0021
2024-01-10				6.4				
2024-01-30		206.46	31	6.5				
2024-02-06 2024-02-13				6.6 6.7		0.142		
2024-02-13				6.5				
2024-02-27				6.6				
2024-02-28 2024-03-05		193.14	29	6.2		0.061		
2024-03-12				6.8		0.001		
2024-03-19				6.9				
2024-03-26 2024-03-28		206.46	31	6.3				
2024-04-02	<1	200.10	0.	6.7	57.0	0.128	0.021	0.0003
2024-04-09				6.9				
2024-04-16 2024-04-23				7.0 6.7				
2024-04-28		199.80	30					
2024-04-30 2024-05-07				6.4 7.0		0.052		
2024-05-14				6.6		0.032		
2024-05-21				6.6				
2024-05-28 2024-06-04		206.46	31	6.6 6.7		0.990		
2024-06-11				6.7		0.000		
2024-06-18				6.8				
2024-06-25 2024-06-28		199.80	30	6.6				
2024-07-02	<1	.00.00		6.9	65.0	0.102	0.022	0.0004
2024-07-11				6.9				
2024-07-16 2024-07-22				7.0 6.7				
2024-07-29		206.46	31					
2024-07-30 2024-08-06				6.7 6.8		0.935		
2024-08-00				6.5		0.935		
2024-08-20				6.8				
2024-08-27 2024-08-28		206.46	31	7.0				
2024-09-03		200.40	01	6.7		1.020		
2024-09-10				6.6				
2024-09-17 2024-09-23				6.8 6.7				
2024-09-28		153.18	23					
2024-10-01	21			6.7	215.0	0.506	0.072	0.0000
2024-10-08 2024-10-15	31			6.8 6.7	215.0	0.596	0.073	0.0009
2024-10-22				6.6				
2024-10-29		206.46	21	6.9				
2024-10-31 2024-11-05		206.46	31	7.1		0.033		
2024-11-12				6.6				
2024-11-19 2024-11-26				6.5 6.6				
2024-11-28		199.80	30	0.0				
2024-12-03				6.3		0.160		
2024-12-11 2024-12-18				6.5 6.3				
2024-12-23				6.5				
2024-12-30 2024-12-31		206.46	31	6.1				
Count	4	12	12	53	4	12	4	4
High	31	206.46	31	7.1	215.0	1.020	0.073	0.0021
Low Mean	<1 9	153.18 199.25	23 30	6.1 6.6	57.0 124.3	0.033 0.369	0.021 0.038	0.0003 0.0009
	, , , , , , , , , , , , , , , , , , ,	.00.20	-0					
High Criteria Low Criteria				8.5 6.5	128-429	0.469	1.000	0.0025
Criteria Ex	0	0	0	6.5 7	0	4	0	0
Frequency	0%	0%	0%	13%	0%	33%	0%	0%
10x Criteria Ex Frequency	0 0%	0 0%	0 0%	0 0%	0 0%	0 0%	0 0%	0 0%
·	5 .5	0.0	3 .0	3 ,5	5 ,5	3 ,5	5 ,5	2 / 0
Date	Fe	Mn	U	hard				
	mg/L	mg/L	mg/L	mg/L				
2024-01-09 2024-04-02	2.77 0.24	0.613 0.133	0.0005 0.0003	175.0 74.6				
2024-07-02	0.58	0.211	0.0004	100.0				
2024-10-08	3.91	0.914	0.0010	274.0				
Count	4	4	4	4				
High	3.91	0.914	0.0010	274.0				
	0.24	0.133	0.0003	74.6 155.9				
Low		በ						
	1.87	0.468	0.0005	100.0				
Low Mean High Criteria	1.87 0.76	0.841	0.0150					
Low Mean	1.87			0 0%				
Low Mean High Criteria Criteria Ex Frequency 10x Criteria Ex	1.87 0.76 2 50% 0	0.841 1 25% 0	0.0150 0 0% 0	0 0% 0				
Low Mean High Criteria Criteria Ex Frequency	1.87 0.76 2 50%	0.841 1 25%	0.0150 0 0%	0 0%				

Printed on 2/13/2025 Page 10 of 37

D-25: Denison TMA-2 (Date	ACID	pH	SO4	Ra	Fe
	mg/L		mg/L	Bq/L	mg/L
2024-01-03		7.5			
2024-02-07		7.3			
2024-03-06		7.4			
2024-04-02	<1	7.2	69.0	0.262	0.23
2024-05-08		7.7			
2024-06-04		7.2			
2024-07-03		7.5			
2024-08-20		7.0			
2024-09-23					
2024-10-31	5	7.2	96.0	0.360	0.36
2024-11-12		8.3			
2024-12-06		7.4			
Count	2	12	2	2	2
High	5	8.3	96.0	0.360	0.36
Low	<1	7	69.0	0.262	0.23
Mean	3	7.4	82.5	0.311	0.29
High Criteria		8.5	128-429	0.469	0.76
Low Criteria		6.5	120 120	0.100	0 0
Criteria Ex	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%
10x Criteria Ex	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%

Printed on 2/13/2025 Page 11 of 37

-								
D-3: Denison TMA-2 Effl Date	DDays	FLOW	hard	рН	SO4	TSS	Ra	Ва
2024-01-02	day	L/s 4.00	mg/L	7.2	mg/L	mg/L <1	Bq/L 0.118	mg/L
2024-01-09		4.00	148.0	7.1	98.0	<1	0.118	0.289
2024-01-16 2024-01-23		5.00		7.3 7.3		<1 <1	0.149	
2024-01-23	31	5.00 4.00		7.4		<1	0.147 0.087	
2024-02-06		4.00	157.0	7.1	110.0	<1	0.085	0.253
2024-02-13 2024-02-21		7.00 3.00		7.1 7.4		<1 <1	0.099 0.087	
2024-02-27		4.00		7.2		1	0.082	
2024-02-28	29	400.00				_		
2024-03-05 2024-03-12		136.00 21.00	92.0	7.1 7.2	69.0	3 1	0.169 0.087	0.700
2024-03-19		15.00		7.3		<1	0.084	
2024-03-26 2024-03-28	31	12.00		7.0		1	0.096	
2024-03-26	31	12.00	73.6	7.0	54.0	<1	0.093	0.463
2024-04-09		23.00		7.0		<1	0.126	
2024-04-16 2024-04-23		6.00 4.00		7.3 7.0		<1 <1	0.060 0.129	
2024-04-28	30						020	
2024-04-30		100.00	07.0	7.1	50.0	<1	0.230	0.544
2024-05-06 2024-05-14		35.00 3.00	87.2	7.3 6.8	50.0	<1 <1	0.155 0.133	0.514
2024-05-21		5.00		6.7		<1	0.147	
2024-05-28 2024-06-05	31	2.00 1.00	57.6	6.8 6.7	29.0	1 1	0.106 0.190	0.197
2024-06-11		1.00	37.0	6.9	29.0	<1	0.176	0.191
2024-06-18		1.00		6.8		2	0.211	
2024-06-25 2024-06-28	30	8.00		6.8		1	0.134	
2024-07-02		7.00	105.0	7.3	59.0	1	0.021	0.466
2024-07-11		6.00		7.2		<1	0.295	
2024-07-16 2024-07-22		2.00 2.00		7.2 7.0		<1 1	0.022 0.248	
2024-07-29	31							
2024-07-30 2024-08-06		0.00 0.00		7.0		2	0.388	
2024-08-13		0.00						
2024-08-20		0.00						
2024-08-27 2024-08-28	0	0.00						
2024-09-03		0.00						
2024-09-10 2024-09-17		0.00 0.00						
2024-09-17		0.00						
2024-09-28	0							
2024-10-01 2024-10-08		0.00 0.00						
2024-10-15		0.00						
2024-10-22		0.00			40.0			
2024-10-31 2024-11-05	1	15.00 7.00	92.2 110.0	6.9 7.2	42.0 61.5	1 <1	0.124 0.138	0.272 0.289
2024-11-12		17.00		7.1	00	<1	0.205	0.200
2024-11-19		7.00		7.3		<1	0.166	
2024-11-26 2024-11-28	30	10.00		7.1		<1	0.166	
2024-12-03		5.00	133.0	7.0	89.3	<1	0.180	0.398
2024-12-10 2024-12-18		7.00 17.00		7.1 7.2		<1 <1	0.147 0.172	
2024-12-23		9.00		7.2		2	0.174	
2024-12-30	24	31.00		6.9		1	0.145	
2024-12-31	31							
Count	12	53	11	53	11	43	43	11
High Low	31 0	136.00 0.00	157.0 57.6	7.4 6.7	110.0 29.0	3 <1	0.388 0.021	0.700 0.197
Mean	23	10.70	105.6	7.1	66.2	1	0.144	0.384
Himb Cuiti-						40		
High Criteria Low Criteria				8.5 6.5	128-429	10	0.469	1.000
Criteria Ex	0	0	0	0	0	0	0	0
Frequency 10x Criteria Ex	0% 0	0% 0	0% 0	0% 0	0% 0	0% 0	0% 0	0% 0
Frequency	0%	0%	0%	0%	0%	0%	0%	0%
Date	Co mg/L	Fe mg/L	Mn mg/L	U mg/L				
2024-01-09	0.0001	0.04	0.002	0.0101				
2024-02-06 2024-03-05	0.0000 0.0018	0.02 1.58	0.002 0.420	0.0175 0.0043				
2024-04-02	0.0001	0.14	0.010	0.0010				
2024-05-06	0.0001	0.11	0.009	0.0027				
2024-06-05 2024-07-02	0.0003 0.0001	0.18 0.08	0.051 0.013	0.0018 0.0036				
2024-09-23								
2024-10-31 2024-11-05	0.0001 0.0001	0.16 0.11	0.017 0.005	0.0050 0.0060				
2024-11-05	0.0001	0.09	0.005	0.0080				
Count High	11 0.0018	11 1.58	11 0.420	11 0.0175				
Low	0.0000	0.02	0.002	0.0010				
Mean	0.0003	0.25	0.053	0.0060				
High Criteria	0.0025	0.76	0.841	0.0150				
Criteria Ex	0	1	0	1				
Frequency 10x Criteria Ex	0% 0	9% 0	0% 0	9% 0				
Frequency	0%	0%	0%	0%				

Printed on 2/13/2025 Page 12 of 37

High Criteria Criteria Ex Frequency 10x Criteria Ex Frequency 0.841 4 100% 0 0% 0.0150 4 100% 0 0%

D-9: Denison TMA-1 D	am 17 Seenage							
Date	FLOW	hard	pН	SO4	Ra	Ва	Co	Fe
	L/s	mg/L		mg/L	Bq/L	mg/L	mg/L	mg/L
2024-01-04	1.53	897.0	7.2	720.0	0.009	0.022	0.0031	1.21
2024-04-02	3.34	488.0	6.7	350.0	< 0.005	0.012	0.0014	0.49
2024-07-11	1.67	677.0	7.3	620.0	0.008	0.019	0.0018	0.60
2024-10-22	1.20	817.0	7.0	796.0	0.011	0.022	0.0029	0.76
Count	4	4	4	4	4	4	4	4
High	3.34	897.0	7.3	796.0	0.011	0.022	0.0031	1.21
Low	1.20	488.0	6.7	350.0	< 0.005	0.012	0.0014	0.49
Mean	1.94	719.8	7.0	621.5	0.008	0.019	0.0023	0.76
High Criteria			8.5	128-429	0.469	1.000	0.0025	0.76
Low Criteria			6.5					
Criteria Ex	0	0	0	3	0	0	2	1
Frequency	0%	0%	0%	75%	0%	0%	50%	25%
10x Criteria Ex	0	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%	0%
Date	Mn	U						
Dute	mg/L	mg/L						
2024-01-04	2.460	0.0446						
2024-04-02	1.070	0.0245						
2024-07-11	1.660	0.0317						
2024-10-22	2.080	0.0500						
Count	4	4						
High	2.460	0.0500						
Low	1.070	0.0245						
Mean	1.818	0.0377						

Printed on 2/13/2025 Page 13 of 37

DS-1: Stanrock Mod	ose Lake Settling Pond Outle	et to Orient Lake Polish	ing Pond Ra
	L/s		Bq/L
2024-01-02	11.00	7.4	
2024-01-09	11.00	7.1	0.019
2024-01-16	51.00	7.2	
2024-01-23	38.00	7.0	
2024-01-30	44.00	7.6	
2024-02-06	6.00	7.6	
2024-02-13	11.00	6.7	
2024-02-20	7.00	7.8	
2024-02-27	6.00	7.1	
2024-03-05	212.00	6.6	
2024-03-12	169.00	6.9	
2024-03-19	58.00	7.5	
2024-03-26	51.00	8.3	
2024-04-02	93.00	7.8	0.029
2024-04-09	81.00	7.4	0.023
2024-04-16		7.7	
	163.00		
2024-04-23	81.00	7.5	
2024-04-30	212.00	7.8	
2024-05-07	58.00	7.9	
2024-05-14	44.00	7.9	
2024-05-21	11.00	7.6	
2024-05-28	7.00	7.6	
2024-06-04	7.00	7.6	
2024-06-11	4.00	7.8	
2024-06-18	7.00	7.7	
2024-06-25	6.00	7.4	
2024-07-02	4.00	7.9	0.022
2024-07-09	11.00	7.4	0.022
2024-07-16	6.00	7.2	
2024-07-23	4.00	7.3	
2024-07-30	11.00	7.8	
2024-08-06	11.00	7.5	
2024-08-13	7.00	6.9	
2024-08-20	11.00	7.9	
2024-08-27	7.00	7.5	
2024-09-03	7.00	7.0	
2024-09-10	4.00	7.7	
2024-09-17	4.00	7.6	
2024-09-23	16.00	7.4	
2024-10-01	7.00	7.6	
2024-10-08	4.00	7.7	
2024-10-15	4.00	7.6	
2024-10-22	7.00	7.6	
2024-10-29	7.00	7.5	
2024-11-05	11.00	7.4	0.020
2024-11-12	4.00	7.5	
2024-11-19	7.00	7.2	
2024-11-26	26.00	7.2	
2024-12-03	11.00	7.6	
2024-12-10	32.00	7.5	
2024-12-17	32.00	6.9	
2024-12-23	26.00	7.0	
2024-12-30	195.00	7.4	
Count	53	53	4
High	212.00	8.3	0.029
Low	4.00	6.6	0.019
Mean	36.32	7.5	0.023
High Criteria		8.5	0.469
Low Criteria		6.5	330
Criteria Ex	0	0.5	0
Frequency	0%	0%	0%
10x Criteria Ex	0	0	0 %
Frequency	0%	0%	0%
i requerioy	U 70	U 70	U 70

Printed on 2/13/2025 Page 14 of 37

DS-11: Stanrock Seepage from Dam A

Date	CONDF µmho/cm	FLOW L/s	рН
2024-01-05	985.6	0.29	5.3
2024-04-08	665.0	0.78	5.3
2024-08-07	1650.0	0.02	4.6
2024-11-18	972.9	0.41	5.3
Count	4	4	4
High	1650.0	0.78	5.3
Low	665.0	0.02	4.6
Mean	1068.4	0.38	5.1
High Criteria			8.5
Low Criteria			6.5
Criteria Ex	0	0	4
Frequency	0%	0%	100%
10x Criteria Ex	0	0	0
Frequency	0%	0%	0%

Printed on 2/13/2025 Page 15 of 37

DS-12: Stanrock Seepage from Dam B

	-		
Date	CONDF µmho/cm	FLOW L/s	рН
2024-01-08	532.0	<1.00	3.6
2024-04-08	331.0	1.57	3.3
2024-08-07		0.00	
2024-11-18	390.0	0.50	4.6
Count	3	4	3
High	532.0	1.57	4.6
Low	331.0	0.50	3.3
Mean	417.7	1.02	3.8
High Criteria			8.5
Low Criteria			6.5
Criteria Ex	0	0	3
Frequency	0%	0%	100%
10x Criteria Ex	0	0	0
Frequency	0%	0%	0%

Printed on 2/13/2025 Page 16 of 37

DS-13: Stanrock Seep			
Date	CONDF	FLOW	pН
	μmho/cm	L/s	
2024-01-08		0.00	
2024-04-08	456.0	0.15	6.2
2024-08-07	1438.0	0.01	6.1
2024-11-18	655.1	0.05	6.4
Count	3	4	3
High	1438.0	0.15	6.4
Low	456.0	0.00	6.1
Mean	849.7	0.05	6.2
Date	CONDF µmho/cm	FLOW L/s	pH
High Criteria			8.5
Low Criteria			6.5
Criteria Ex	0	0	3
Frequency	0%	0%	100%
10x Criteria Ex	0	0	0
Frequency	0%	0%	0%

Printed on 2/13/2025 Page 17 of 37

DS-16: Stanrock TMA	, Seepage from Dam M at C	Juirka I aka Dalta						
Date	CONDF	DOC	FLOW	hard	рН	SO4	Ra	Ва
	μmho/cm	mg/L	L/s	mg/L		mg/L	Bq/L	mg/L
2024-01-02			0.00					
2024-01-09 2024-01-16			0.00 0.00					
2024-01-10			0.00					
2024-01-30			0.00					
2024-02-06			0.00					
2024-02-13			0.00					
2024-02-21			0.00					
2024-02-27			0.00					
2024-03-05	35.8	4.8	14.00	14.3	5.3	8.8	<0.005	0.006
2024-03-12	43.3		1.40		6.6			
2024-03-22	43.0		0.00		7.5			
2024-03-26	88.5		0.00		6.2			
2024-04-02	52.0	2.2	0.00	29.0	7.1	19.0	0.006	0.011
2024-04-09	45.0		0.60		6.5			
2024-04-16	40.0		1.10		7.4			
2024-04-23	52.0		0.80		6.5			
2024-04-30	39.0		2.00		7.4			
2024-05-09	43.0		0.10		7.5			
2024-05-14			0.00					
2024-05-21			0.00					
2024-05-28			0.00					
2024-06-04			0.00					
2024-06-11			0.00					
2024-06-18			0.00					
2024-06-25			0.00					
2024-07-02			0.00					
2024-07-09			0.00					
2024-07-16 2024-07-24			0.00 0.00					
2024-07-24			0.00					
2024-07-30			0.00					
2024-08-00			0.00					
2024-08-13			0.00					
2024-08-27			0.00					
2024-09-03			0.00					
2024-09-10			0.00					
2024-09-17			0.00					
2024-09-23			0.00					
2024-10-01			0.00					
2024-10-08			0.00					
2024-10-15			0.00					
2024-10-22			0.00					
2024-10-29			0.00					
2024-11-05			0.00					
2024-11-12			0.00					
2024-11-19			0.00					
2024-11-26			0.00					
2024-12-03			0.00					
2024-12-10			0.00					
2024-12-17			0.00					
2024-12-23	40.0		0.00			40.0		
2024-12-30	48.3	4.5	2.50	31.4	6.4	18.2	<0.007	0.009
Count	14	2	52	2	14	3	2	3
Count	11 88.5	3 4.8	53 14.00	3 31.4	11 7.5	3 19.0	3 <0.007	3 0.011
High Low	88.5 35.8	4.8 2.2	14.00 0.00	31.4 14.3	7.5 5.3	19.0 8.8	<0.007 <0.005	0.011
Mean	48.2	3.8	0.43	24.9	6.8	6.6 15.3	0.005	0.008
WOUL	40.∠	5.0	0.43	24.3	0.0	10.0	0.000	0.006
High Criteria					8.5	128-429	0.469	1.000
Low Criteria					6.5	120-723	0.700	1.000
Criteria Ex	0	0	0	0	2	0	0	0
Frequency	0%	0%	0%	0%	18%	0%	0%	0%
10x Criteria Ex	0	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%	0%
								-
Date	Co	Fe	Mn	U				
	mg/L	mg/L	mg/L	mg/L				
2024-03-05	0.0003	0.07	0.016	0.0003				
2024-04-02	0.0002	0.12	0.026	0.0001				
2024-12-30	0.0002	0.10	0.011	<0.0010				
Count	2	2	2	2				
Count	3	3	3	3				
High	0.0003 0.0002	0.12 0.07	0.026 0.011	<0.0010 0.0001				
Low Mean	0.0002	0.07	0.011 0.018	0.0001				
IVICALI	0.0002	0.08	0.010	0.0000				
High Criteria	0.0005	0.76	0.841	0.0150				
Criteria Ex	0.0005	0.76	0.641	0.0150				
Frequency	0%	0%	0%	0%				
10x Criteria Ex	0	0	0	0				
Frequency	0%	0%	0%	0%				
	• , •	• • • • • • • • • • • • • • • • • • • •	•	· · ·				

Printed on 2/13/2025 Page 18 of 37

DS-2: Stanrock ETP Influent								
Date	ACID mg/L	FLOW L/s	Freeboard(m) m	pН	SO4 mg/L	Ra Bq/L	Ba mg/L	Co mg/L
2024-01-01		0.00	0.9800					
2024-01-03 2024-01-04	218	87.00 0.00	1.4500 1.2000	2.9	510.0	0.267	0.022	0.0984
2024-01-05		0.00	1.0800					
2024-01-06 2024-01-07		0.00 0.00	0.9400 0.9100					
2024-01-08		0.00	0.9200					
2024-01-09		0.00	0.8200					
2024-01-10 2024-01-11		125.30 95.00	1.6500					
2024-01-12		0.00	1.3000					
2024-01-13 2024-01-14		0.00 0.00	1.1100 0.9800					
2024-01-15		115.00	0.8600					
2024-01-16 2024-01-17		85.00	1.5000					
2024-01-17		0.00 0.00	1.3500 1.1700					
2024-01-19		100.00	1.0600					
2024-01-20 2024-01-21		0.00 0.00	1.0500 0.9400					
2024-01-22		113.00	1.9000					
2024-01-23		85.00	1.5000					
2024-01-24 2024-01-25		0.00 0.00	1.3500 1.2000					
2024-01-26		104.90	1.0900					
2024-01-27 2024-01-28		0.00 0.00	1.1000 0.9800					
2024-01-29		115.00	0.8900					
2024-01-30		85.00	1.5300					
2024-01-31 2024-02-01		0.00 0.00	1.4800 1.4600					
2024-02-02		0.00	1.4400					
2024-02-03 2024-02-04		0.00	1.4400					
2024-02-04		0.00 0.00	1.4200 1.4100					
2024-02-06		0.00	1.4000					
2024-02-07 2024-02-08		0.00 0.00	1.4000 1.3100					
2024-02-09		0.00	1.2000					
2024-02-10		0.00	1.0800					
2024-02-11 2024-02-12		0.00 0.00	0.9700 0.8700					
2024-02-13		0.00	0.8200					
2024-02-14 2024-02-15		123.00 0.00	0.6700 1.4000	2.8		0.244		
2024-02-16		103.00	1.1600	2.0		0.211		
2024-02-17		0.00	1.1800					
2024-02-18 2024-02-19		0.00 0.00	1.1700 1.1500					
2024-02-20		0.00	1.1300					
2024-02-21 2024-02-22		0.00 0.00	1.1100 1.1200					
2024-02-22		0.00	1.0800					
2024-02-24		0.00	1.0600					
2024-02-25 2024-02-26		0.00 0.00	1.0500 1.0300					
2024-02-27		0.00	1.0200					
2024-02-28 2024-02-29		0.00	0.9800					
2024-02-29		111.00 104.00	0.9200 1.0400					
2024-03-02		0.00	1.0000					
2024-03-03 2024-03-04		0.00 120.00	0.8600 0.7200					
2024-03-05		128.00	1.8200	2.9		0.270		
2024-03-06 2024-03-07		140.00 137.00	1.7700 1.8000					
2024-03-08		135.00	1.8200					
2024-03-09		130.00						
2024-03-10 2024-03-11		122.00 114.00						
2024-03-12		109.00						
2024-03-13 2024-03-14		97.00 92.00						
2024-03-15		88.00						
2024-03-16		82.00	1.6300					
2024-03-17 2024-03-18		0.00 118.00	1.1900 0.9100					
2024-03-19		124.00	0.7800					
2024-03-20 2024-03-21		128.00 102.00	0.6700					
2024-03-22		82.00	1.6100					
2024-03-23		0.00	1.3200					
2024-03-24 2024-03-25		0.00 118.00	1.0800 0.8900					
2024-03-26		94.00						
2024-03-27 2024-03-28		92.00 100.00	1.2800					
2024-03-29		93.00						
2024-03-30 2024-03-31		77.00 0.00	1.7200 1.4300					
2024-03-31		105.00	1.2000					
2024-04-02	224	82.00	1.7000	3.0	450.0	0.168	0.011	0.0943
2024-04-03 2024-04-04		0.00 117.00	1.4000 0.9000					
2024-04-05		109.00						
2024-04-06 2024-04-07		103.00 96.00						
2024-04-07		88.00	1.6100					
2024-04-09		0.00	1.3100					
2024-04-10 2024-04-11		116.00 98.00	1.0400					
2024-04-12		96.00						
2024-04-13 2024-04-14		136.00 140.00						
2024-04-14		129.00						
2024-04-16		116.00						
2024-04-17		101.00						

Printed on 2/13/2025 Page 19 of 37

DC 2: Ctanwack ETD Influent								
DS-2: Stanrock ETP Influent	ACID	FLOW	Freeboard(m)	рН	SO4	Ra	Ва	Co
2024-04-18	mg/L	L/s 103.00	m		mg/L	Bq/L	mg/L	mg/L
2024-04-19		111.00	1.2700					
2024-04-20		111.00						
2024-04-21		100.00						
2024-04-22 2024-04-23		88.00 82.00						
2024-04-24		80.00						
2024-04-25		78.00						
2024-04-26 2024-04-27		74.00 0.00	1.6300					
2024-04-28		0.00	1.2700					
2024-04-29		125.00	1.0300					
2024-04-30 2024-05-01		145.00 147.00						
2024-05-02		139.00						
2024-05-03		131.00						
2024-05-04 2024-05-05		129.00 122.00						
2024-05-06		108.00	1.6600					
2024-05-07		103.00						
2024-05-08 2024-05-09		103.00 103.00	1.9200	2.9		0.170		
2024-05-10		0.00	1.6600	2.9		0.170		
2024-05-11		0.00	1.5400					
2024-05-12 2024-05-13		0.00 130.00	1.3300 1.0000					
2024-05-13		113.00	1.0000					
2024-05-15		94.00	1.7300					
2024-05-16		0.00	1.5300					
2024-05-17 2024-05-18		0.00 0.00	1.3400 1.1600					
2024-05-19		0.00	0.9900					
2024-05-20		0.00	0.8400					
2024-05-21 2024-05-22		0.00 144.00	0.6900 0.5600					
2024-05-23		140.00	0.6800					
2024-05-24		0.00	0.6800					
2024-05-25 2024-05-26		0.00 0.00	0.6700 0.6700					
2024-05-27		0.00	0.6700					
2024-05-28		0.00	0.6700					
2024-05-29 2024-05-30		0.00 126.00	0.6800 0.6700					
2024-05-31		99.00	0.0700					
2024-06-01		0.00	1.4800					
2024-06-02 2024-06-03		0.00 0.00	1.4900					
2024-06-03		0.00	1.4800 1.4800					
2024-06-05		0.00	1.4700					
2024-06-06		0.00	1.4400					
2024-06-07 2024-06-08		0.00 0.00	1.4300 1.4300					
2024-06-09		0.00	1.4200					
2024-06-10		0.00	1.4400					
2024-06-11 2024-06-12		0.00 0.00	1.4400 1.4300					
2024-06-13		0.00	1.4300					
2024-06-14		0.00	1.4200					
2024-06-15 2024-06-16		0.00 0.00	1.4300 1.4300					
2024-06-17		0.00	1.4300					
2024-06-18		0.00	1.4200					
2024-06-19 2024-06-20		0.00 0.00	1.4200 1.4200					
2024-06-21		0.00	1.4200					
2024-06-22		0.00	1.4200					
2024-06-23 2024-06-24		0.00 0.00	1.3000 1.2500					
2024-06-25		0.00	1.2300					
2024-06-26		0.00	1.2300					
2024-06-27 2024-06-28		0.00 0.00	1.1100 0.9500					
2024-06-29		0.00	0.8500					
2024-06-30		0.00	0.5900					
2024-07-01 2024-07-02	219	0.00 138.00	0.4300 0.4000	2.7	540.0	0.544	0.020	0.0921
2024-07-03		137.00	0.4500	4.1	U-10.U	0.077	0.020	0.0021
2024-07-04		132.00	0.6100					
2024-07-05 2024-07-06		125.00 0.00	0.7500 0.8000					
2024-07-07		0.00	0.7800					
2024-07-08		126.00	0.7600					
2024-07-09 2024-07-10		115.00 113.00	0.9100 1.0700					
2024-07-11		106.00	1.2100					
2024-07-12		0.00	1.2800					
2024-07-13 2024-07-14		0.00 0.00	1.2800 1.2800					
2024-07-15		0.00	1.2700					
2024-07-16		0.00	1.2700					
2024-07-17 2024-07-18		0.00 0.00	1.2700 1.2600					
2024-07-19		0.00	1.2700					
2024-07-20		0.00	1.2700					
2024-07-21 2024-07-22		0.00 0.00	1.2700 1.2700					
2024-07-23		0.00	1.2800					
2024-07-24		0.00	1.2600					
2024-07-25 2024-07-26		0.00 0.00	1.2700 1.2800					
2024-07-26 2024-07-27		0.00	1.2700					
2024-07-28		0.00	1.2800					
2024-07-29 2024-07-30		0.00 0.00	1.2700 1.2700					
2024-07-31		0.00	1.2700					
2024-08-01		0.00	1.2800					
2024-08-02		0.00	1.2700					

Printed on 2/13/2025 Page 20 of 37

DC 2: Stanzack ETD Influent								
DS-2: Stanrock ETP Influent	ACID	FLOW	Freeboard(m)	рН	SO4	Ra	Ва	Co
	mg/L	L/s	m		mg/L	Bq/L	mg/L	mg/L
2024-08-03 2024-08-04		0.00 0.00	1.2800 1.2900					
2024-08-05		0.00	1.2900					
2024-08-06		0.00	1.2900					
2024-08-07		0.00	1.3000					
2024-08-08 2024-08-09		0.00 0.00	1.3000 1.3000					
2024-08-10		0.00	1.3100					
2024-08-11		0.00	1.3200					
2024-08-12 2024-08-13		0.00 0.00	1.3200 1.3100					
2024-08-14		96.00	1.3200					
2024-08-15		66.00	1.9700					
2024-08-16		62.00	1.9500					
2024-08-17 2024-08-18		0.00 0.00	2.0100 2.0000					
2024-08-19		48.00	2.1800	2.7		0.681		
2024-08-20		41.00	2.0900					
2024-08-21		34.00	2.2800					
2024-08-22 2024-08-23		25.00 25.00	2.3200 2.3600					
2024-08-24		0.00	2.3400					
2024-08-25		0.00	2.3500					
2024-08-26 2024-08-27		20.00	2.3300 2.3800					
2024-08-28		15.00	2.4100					
2024-08-29		15.00	2.2600					
2024-08-30		0.00	2.4400					
2024-08-31 2024-09-01		0.00 0.00	2.4200 2.4200					
2024-09-02		0.00	2.4200					
2024-09-03		10.00	2.4400	2.7		0.974		
2024-09-04 2024-09-05		15.00 0.00	2.2800 2.2300					
2024-09-06		0.00	4.4000					
2024-09-07		0.00	4.4100					
2024-09-08		0.00	4.4100					
2024-09-09 2024-09-10		0.00 0.00	4.4000 4.3300					
2024-09-11		0.00	4.2400					
2024-09-12		0.00	4.1600					
2024-09-13 2024-09-14		0.00 0.00	4.1100 4.0300					
2024-09-15		0.00	3.9600					
2024-09-16		0.00	3.9100					
2024-09-17		0.00	3.8300					
2024-09-18 2024-09-19		0.00 0.00	3.7700 3.7100					
2024-09-19		0.00	3.6600					
2024-09-21		0.00	3.6000					
2024-09-22		0.00	3.5400					
2024-09-23 2024-09-24		0.00 0.00	3.4900 3.2300					
2024-09-25		0.00	2.4200					
2024-09-26		0.00	2.4000					
2024-09-27		0.00	2.3800					
2024-09-28 2024-09-29		0.00 0.00	2.3800 2.3700					
2024-09-30		0.00	2.3700					
2024-10-01		0.00	2.3700					
2024-10-02 2024-10-03		0.00 0.00	2.3700 2.3000					
2024-10-03		0.00	2.0600					
2024-10-05		0.00	1.8500					
2024-10-06		0.00	1.6600					
2024-10-07 2024-10-08		0.00 0.00	1.4400 1.4000					
2024-10-09		0.00	1.4000					
2024-10-10		0.00	1.4000					
2024-10-11		0.00	1.3900					
2024-10-12 2024-10-13		0.00 0.00	1.3900 1.3900					
2024-10-14		0.00	1.3900					
2024-10-15		0.00	1.3900					
2024-10-16 2024-10-17		0.00 0.00	1.3800 1.3900					
2024-10-18		0.00	1.3900					
2024-10-19		0.00	1.3800					
2024-10-20 2024-10-21		0.00 0.00	1.3800 1.3700					
2024-10-21		0.00	1.3700					
2024-10-23		0.00	1.3700					
2024-10-24		0.00	1.3700					
2024-10-25 2024-10-26		0.00 0.00	1.3700 1.3600					
2024-10-27		0.00	1.3600					
2024-10-28		0.00	1.3600					
2024-10-29		0.00	1.3600			0.426		
2024-10-30 2024-10-31		0.00 0.00	1.3500 1.2500					
2024-11-01		0.00	1.0500					
2024-11-02		0.00	0.9700					
2024-11-03 2024-11-04		0.00 110.00	0.9300 0.8700					
2024-11-04 2024-11-05		110.00 86.00	2.0000					
2024-11-06		87.00	2.0000					
2024-11-07		82.00	1.4800					
2024-11-08 2024-11-09		99.00 0.00	1.2200 1.0700					
2024-11-10		0.00	0.8500					
2024-11-11	400	123.00	0.5900		#00 -	0.045		
2024-11-12 2024-11-13	186	106.00 86.00	1.9000	2.7	523.0	0.213	0.023	0.0976
2024-11-13		00.00	1.4000					

Printed on 2/13/2025 Page 21 of 37

DC 2: Stanzack ETD Influent								
DS-2: Stanrock ETP Influent	ACID	FLOW	Freeboard(m)	pH	SO4	Ra	Ва	Co
	mg/L	L/s	m		mg/L	Bq/L	mg/L	mg/L
2024-11-14		0.00	1.1800					
2024-11-15		0.00	0.9500					
2024-11-16		0.00	0.8800					
2024-11-17 2024-11-18		0.00 0.00	0.9000 0.8600					
2024-11-10		0.00	0.7000					
2024-11-20		125.00	0.5400					
2024-11-21		105.00	1.9300					
2024-11-22		82.00	1.4000					
2024-11-23		0.00	1.3800					
2024-11-24		0.00	1.3500					
2024-11-25		0.00	1.3200					
2024-11-26		0.00	1.2600					
2024-11-27		0.00	1.1600					
2024-11-28		104.00	1.0400					
2024-11-29		83.00	1.4500					
2024-11-30		0.00	1.2400					
2024-12-01		0.00	1.1700					
2024-12-02 2024-12-03		0.00 0.00	1.1300 1.0500					
2024-12-03		0.00	0.9400					
2024-12-04		113.00	0.8200					
2024-12-06		85.00	1.4200					
2024-12-07		0.00	1.3500					
2024-12-08		0.00	1.2700					
2024-12-09		0.00	1.1600					
2024-12-10		0.00	0.9700					
2024-12-11		0.00	0.9700					
2024-12-12		120.00	0.6000					
2024-12-13		98.00	1.1300					
2024-12-14		0.00	1.0100					
2024-12-15		0.00	0.9100					
2024-12-16		0.00	0.9200					
2024-12-17 2024-12-18		126.00 108.00	0.5500 0.9300	2.6		0.203		
2024-12-19		120.00	0.6500	2.0		0.203		
2024-12-13		100.00	1.9500					
2024-12-21		0.00	1.1000					
2024-12-22		0.00	1.0300					
2024-12-23		106.00	0.9800					
2024-12-24		0.00	0.9900					
2024-12-25		0.00	0.9200					
2024-12-26		0.00	0.8700					
2024-12-27		113.00	0.8000					
2024-12-28		126.00	0.4400					
2024-12-29		127.00						
2024-12-30		117.00	1.8400					
2024-12-31		108.00	1.8900					
Count	4	365	365	12	4	12	4	4
High	224	147.00	4.4100	3.0	540.0	0.974	4 0.023	0.0984
Low	186	0.00	0.4000	2.6	450.0	0.168	0.023	0.0921
Mean	212	36.10	1.4715	2.8	505.8	0.378	0.019	0.0956
High Criteria				8.5	128-429	0.469	1.000	0.0005
Low Criteria				6.5				
Criteria Ex	0	0	0	12	4	3	0	4
Frequency	0%	0%	0%	100%	100%	25%	0%	100%
10x Criteria Ex	0	0	0	0	0	0	0	4
Frequency	0%	0%	0%	0%	0%	0%	0%	100%
B.4.	-							
Date	Fe mg/L	Mn mg/L	U mg/L	hard mg/L				
2024-01-03	44.40	1.550	0.0537	331.0				
2024-04-02	49.60	0.770	0.0550	257.0				
2024-07-02	24.70	1.460	0.0377	302.0				
2024-11-12	24.60	1.780	0.0330					
Count	4	4	4	4				
High	49.60	1.780	0.0550	331.0				
Low	24.60	0.770	0.0330	257.0				
Mean	35.82	1.390	0.0449	296.7				
Llimb Cuitaria	0.76	0.044	0.0450					
High Criteria Criteria Ex	0.76 4	0.841 3	0.0150 4	0				
Frequency	100%	75%	100%	0%				
10x Criteria Ex	4	0	0	0				
Frequency	100%	0%	0%	0%				
1 9				- / •				

Printed on 2/13/2025 Page 22 of 37

DS-3: Stanrock ph Pro	be Control (ETP Operat BaCl2T kg/month	ions) CaOT tonnes/mth.	NaOHT kg/month	ODays day	рН
2024-01-01 2024-01-02					11.2
2024-01-03 2024-01-04					10.4
2024-01-05					
2024-01-06 2024-01-07					
2024-01-08 2024-01-09					
2024-01-10 2024-01-11					10.6 10.5
2024-01-12					10.5
2024-01-13 2024-01-14					
2024-01-15 2024-01-16					10.8 10.5
2024-01-17 2024-01-18					
2024-01-19					10.9
2024-01-20 2024-01-21					
2024-01-22 2024-01-23					11.2 10.3
2024-01-24 2024-01-25					
2024-01-26 2024-01-27					10.7
2024-01-28					40.0
2024-01-29 2024-01-30	83.02	11.23	0.00	12	10.8 10.8
2024-01-31 2024-02-01					
2024-02-02					
2024-02-03 2024-02-04					
2024-02-05 2024-02-06					
2024-02-07 2024-02-08					
2024-02-09					
2024-02-10 2024-02-11					
2024-02-12 2024-02-13					
2024-02-14					10.8
2024-02-15 2024-02-16					10.5 12.0
2024-02-17 2024-02-18					
2024-02-19					
2024-02-20 2024-02-21					
2024-02-22 2024-02-23					
2024-02-24					
2024-02-25 2024-02-26					
2024-02-27 2024-02-28	21.15	3.69	0.00	4	
2024-02-29					10.8
2024-03-01 2024-03-02					10.9
2024-03-03 2024-03-04					11.2
2024-03-05 2024-03-06					10.9 10.8
2024-03-07					10.8
2024-03-08 2024-03-09					10.8 10.8
2024-03-10 2024-03-11					10.8 10.7
2024-03-12					10.7
2024-03-13 2024-03-14					10.8 10.8
2024-03-15 2024-03-16					10.8 10.8
2024-03-17 2024-03-18					
2024-03-19					10.7
2024-03-20 2024-03-21					10.6 10.8
2024-03-22 2024-03-24					11.1
2024-03-25					11
2024-03-26 2024-03-27					10.7 10.8
2024-03-28 2024-03-29	259.33	33.61	0.00	25	10.9
2024-03-30 2024-03-31					
2024-04-01					10.6
2024-04-02 2024-04-03					10.7
2024-04-04 2024-04-05					10.6 10.6
2024-04-06					10.0
2024-04-07 2024-04-08					10.4
2024-04-09 2024-04-10					10.8
2024-04-11					10.6
2024-04-12 2024-04-13					10.7 10.8
2024-04-14 2024-04-15					10.8 10.8
2024-04-16					10.8
2024-04-17 2024-04-18					10.8 10.9
2024-04-19					

Printed on 2/13/2025 Page 23 of 37

DS-3: Stanrock ph Date	Probe Control (ETP Operation BaCl2T kg/month	ons) CaOT tonnes/mth.	NaOHT kg/month	ODays day	рН
2024-04-21					
2024-04-22 2024-04-23					11 10.9
2024-04-24					10.9
2024-04-25 2024-04-26					10.9 10.9
2024-04-27					10.0
2024-04-28	157.22	32.12	0.00	26	44.4
2024-04-29 2024-04-30					11.1 11.9
2024-05-01					10.6
2024-05-02 2024-05-03					11 10.7
2024-05-04					
2024-05-05 2024-05-06					11.3
2024-05-07					10.7
2024-05-08					11.2
2024-05-09 2024-05-10					10.8
2024-05-11					
2024-05-12 2024-05-13					10.8
2024-05-14					10.9
2024-05-15 2024-05-16					
2024-05-17					
2024-05-18					
2024-05-19 2024-05-20					
2024-05-21					
2024-05-22 2024-05-23					10.8 12.3
2024-05-24					12.0
2024-05-25 2024-05-26					
2024-05-27					
2024-05-28	76.80	27.65	0.00	16	
2024-05-29 2024-05-30					10.7
2024-05-31					10.8
2024-06-01 2024-06-02					
2024-06-03					
2024-06-04 2024-06-05					
2024-06-06					
2024-06-07					
2024-06-08 2024-06-09					
2024-06-10					
2024-06-11 2024-06-12					
2024-06-13					
2024-06-14 2024-06-15					
2024-06-16					
2024-06-17					
2024-06-18 2024-06-19					
2024-06-20					
2024-06-21 2024-06-22					
2024-06-23					
2024-06-24 2024-06-25					
2024-06-26					
2024-06-27	0.00	0.00	0.00	0	
2024-06-28 2024-06-29	0.00	0.00	0.00	0	
2024-06-30					
2024-07-01 2024-07-02					10.9
2024-07-03					10.9
2024-07-04 2024-07-05					10.7 10.7
2024-07-06					10.7
2024-07-07 2024-07-08					10.7
2024-07-08 2024-07-09					10.7
2024-07-10					10.6
2024-07-11 2024-07-12					10.8
2024-07-13					
2024-07-14 2024-07-15					
2024-07-16					
2024-07-17 2024-07-18					
2024-07-19					
2024-07-20 2024-07-21					
2024-07-21 2024-07-22					
2024-07-23					
2024-07-24 2024-07-25					
2024-07-26					
2024-07-27 2024-07-28					
2024-07-28 2024-07-29	10.27	11.81	0.00	8	
2024-07-30					
2024-07-31 2024-08-01					
2024-08-02					
2024-08-03 2024-08-04					
2024-08-05					

Printed on 2/13/2025 Page 24 of 37

DS-3: Stanrock ph Prob	BaCI2T	CaOT	NaOHT	ODays	рН
2024-08-07	kg/month	tonnes/mth.	kg/month	day	
2024-08-08 2024-08-09					
2024-08-10					
2024-08-11 2024-08-12					
2024-08-13					
2024-08-14 2024-08-15					11.2 11.0
2024-08-16					11.1
2024-08-17 2024-08-18					
2024-08-19 2024-08-20					11.3 11.0
2024-08-21					11.0
2024-08-22 2024-08-23					10.9 10.8
2024-08-24					10.0
2024-08-25 2024-08-26					10.9
2024-08-27	24.38	4.81	0.00	12	11.1
2024-08-28 2024-08-29	24.30	4.01	0.00	12	10.9
2024-08-30 2024-08-31					
2024-09-01					
2024-09-02 2024-09-03					11.3
2024-09-04					11.4
2024-09-05 2024-09-06					
2024-09-07 2024-09-08					
2024-09-09					
2024-09-10 2024-09-11					
2024-09-12					
2024-09-13 2024-09-14					
2024-09-15 2024-09-16					
2024-09-17					
2024-09-18 2024-09-19					
2024-09-20					
2024-09-21 2024-09-22					
2024-09-23					
2024-09-24 2024-09-25					
2024-09-26 2024-09-27	3.35	0.55	0.00	2	
2024-09-28					
2024-09-29 2024-09-30					
2024-10-01					
2024-10-02 2024-10-03					
2024-10-04 2024-10-05					
2024-10-06					
2024-10-07 2024-10-08					
2024-10-09					
2024-10-10 2024-10-11					
2024-10-12 2024-10-13					
2024-10-14					
2024-10-15 2024-10-16					
2024-10-17					
2024-10-18 2024-10-19					
2024-10-20 2024-10-21					
2024-10-22					
2024-10-23 2024-10-24					
2024-10-25					
2024-10-26 2024-10-27					
2024-10-28 2024-10-29					
2024-10-30					
2024-10-31 2024-11-01	0.00	0.00	0.00	0	
2024-11-02					
2024-11-03 2024-11-04					11.0
2024-11-05 2024-11-06					11.0 11.0
2024-11-07					11.0
2024-11-08 2024-11-09					11.4
2024-11-10					
2024-11-11 2024-11-12					11.1 11.0
2024-11-13 2024-11-14					11.0
2024-11-15					
2024-11-16 2024-11-17					
2024-11-18					
2024-11-19 2024-11-20					10.4
2024-11-21					11.2

Printed on 2/13/2025 Page 25 of 37

DS-3: Stanrock ph Prol	be Control (ETP Operation	ons) CaOT	NaOHT	ODays	рН
2410	kg/month	tonnes/mth.	kg/month	day	Pii
2024-11-23					
2024-11-24					
2024-11-25					
2024-11-26					
2024-11-27					
2024-11-28	54.42	16.99	0.00	13	10.8
2024-11-29					11.4
2024-11-30					
2024-12-01					
2024-12-02					
2024-12-03					
2024-12-04					
2024-12-05					10.4
2024-12-06					11.2
2024-12-07					
2024-12-08					
2024-12-09					
2024-12-10					
2024-12-11					
2024-12-12					10.9
2024-12-13					10.9
2024-12-14					
2024-12-15					
2024-12-16					
2024-12-17					10.9
2024-12-18					10.8
2024-12-19 2024-12-20					11.0
2024-12-20					11.4
2024-12-21					
2024-12-22					10.8
2024-12-24					10.0
2024-12-25					
2024-12-26					
2024-12-27					11.7
2024-12-28					11.1
2024-12-29					10.8
2024-12-30					11.1
2024-12-31	51.38	15.23	0.00	14	11.2
Count	12	12	12	12	365.0
High	259.33	33.61	0.00	26	12.3
Low	0.00	0.00	0.00	0	10.3
Mean	61.78	13.14	0.00	11	10.9

Printed on 2/13/2025 Page 26 of 37

	ishing Pond Outlet (Final I							
Date	DDays	DOC	FLOW	hard	pH	SO4	TSS	TOXCD
	day	mg/L	L/s	mg/L		mg/L	mg/L	IC25
2024-01-02			17.00		7.3		<1	
2024-01-09		2.2	13.00	311.0	7.2	270.0	<1	
2024-01-16			35.00		7.5		1	
2024-01-23			21.00		7.2		1	
2024-01-30	31	0.0	21.00	0.47.0	7.4	000.0	1	
2024-02-06		2.6	6.00	317.0	7.6	300.0	1	
2024-02-13			9.00		7.1		<1	
2024-02-20			13.00		7.5		<1	
2024-02-27	00		6.00		7.1		<1	
2024-02-28	29	0.0	054.00	207.0	0.0	070.0	-0	
2024-03-05		2.3	254.00	327.0	6.9	270.0	<3	
2024-03-12			136.00		7.2		2 <1	
2024-03-18			48.00		7.2		2	
2024-03-26 2024-03-28	31		71.00		8.1		2	
2024-03-26	31	2.2	54.00	244.0	7.7	200.0	3	
2024-04-02		2.2	67.00	244.0	7.1 7.1	200.0	1	
2024-04-09			105.00		7.3		1	
2024-04-10			78.00		7.4		1	
2024-04-28	30		70.00		7.4			
2024-04-30	30		197.00		7.5		2	
2024-05-08		1.8	67.00	250.0	7.4	230.0	2	
2024-05-14		1.0	25.00	200.0	7.3	200.0	1	
2024-05-14			9.00		7.2		1	
2024-05-28	31		5.00		7.0		1	
2024-06-04	0.		3.00		7.2		1	
2024-06-11			3.00		7.1		1	
2024-06-18		1.7	6.00	280.0	7.0	270.0	<1	100
2024-06-25		•••	9.00	200.0	7.1	2.0.0	<1	
2024-06-28	30							
2024-07-02		1.7	6.00	273.0	7.3	250.0	<1	
2024-07-10			9.00		7.2		<1	
2024-07-16			6.00		7.3		1	
2024-07-22			1.00		7.2		<1	
2024-07-29	31							
2024-07-30			3.00		7.2		1	
2024-08-06		1.3	1.00	291.0	7.0	250.0	<1	
2024-08-12			3.00		7.2		1	
2024-08-20			3.00		7.1		<1	
2024-08-27			3.00		7.5		1	
2024-08-28	31							
2024-09-03		1.3	1.00	284.0	7.1	250.0	<1	
2024-09-10		1.2	1.00	299.0	7.1	260.0	1	58
2024-09-17			1.00		7.1		<1	
2024-09-23			13.00		7.2		<1	
2024-09-28	30							
2024-10-01			3.00		7.3		<1	
2024-10-08		1.5	3.00	317.0	7.1	275.0	4	
2024-10-16			1.00		7.2		<1	
2024-10-22			6.00		7.3		<1	
2024-10-29	0.4		3.00		7.2		1	
2024-10-31	31	0.4	17.00	202.0	7.5	207.0	-4	
2024-11-05		2.1	17.00	303.0	7.5	297.0	<1	
2024-11-12			9.00		7.2		<1	
2024-11-19			9.00		7.4		3	
2024-11-26	20		25.00		7.2		2	
2024-11-28	30	0.0	12.00	217.0	7.0	200 0	_1	
2024-12-03 2024-12-10		2.3	13.00 25.00	317.0	7.3 7.4	288.0	<1 <1	
2024-12-10							<1	
2024-12-16			78.00		7.3 7.4		2	
2024-12-23			25.00					
	31		153.00		7.1		2	
2024-12-31	ا ن							
Count	12	13	53	13	53	13	53	2
High	31	2.6	254.00	327.0	8.1	300.0	4	100
Low	29	1.2	1.00	244.0	6.9	200.0	4 <1	58
Mean	31	1.9	32.06	293.3	7.3	262.3	1	79
IVICALI	ا ن	1.9	32.00	233.3	1.3	202.3	1	19
High Criteria					8.5	128-429		
Low Criteria					6.5	120-723		
Criteria Ex	0	0	0	0	0.5	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%	0%
10x Criteria Ex	0%	0%	0%	0%	0%	0%	0%	0%
Frequency	0%	0%	0%	0%	0%	0%	0%	0%
i requericy	U 70	U 70	U 70	U 70	U 70	U 70	U 70	U70

Printed on 2/13/2025 Page 27 of 37

DS-4: Orient Lake Polish	ning Pond Outlet (Final	Discharge)						
Date	TOXDM %	TOXRT	Ra Bq/L	Ba mg/L	Co mg/L	Fe mg/L	Mn mg/L	U mg/L
2024-01-02			0.090					
2024-01-09			0.070	0.037	0.0002	0.12	0.029	0.0106
2024-01-16			0.081					
2024-01-23			0.102					
2024-01-30			0.070					
2024-02-06			0.088	0.037	0.0002	0.12	0.036	0.0067
2024-02-13			0.069					
2024-02-20			0.065					
2024-02-27			0.079					
2024-03-05			0.114	0.036	0.0008	0.46	0.070	0.0074
2024-03-12			0.039					
2024-03-18			0.046					
2024-03-26			0.033					
2024-04-02			0.049	0.066	0.0006	0.19	0.041	0.0016
2024-04-09			0.059					
2024-04-16			0.062					
2024-04-23			0.074					
2024-04-30			0.050					
2024-05-08			0.050	0.062	0.0003	0.11	0.021	0.0031
2024-05-14			0.110					
2024-05-21			0.110					
2024-05-28			0.139					
2024-06-04			0.146					
2024-06-11			0.045					
2024-06-18	0	0	0.119	0.057	0.0001	0.04	0.027	0.0031
2024-06-25			0.261					
2024-07-02			0.154	0.049	0.0002	0.05	0.027	0.0037
2024-07-10			0.150					
2024-07-16			0.147					
2024-07-22			0.152					
2024-07-30			0.139					
2024-08-06			0.174	0.044	0.0002	0.04	0.066	0.0036
2024-08-12			0.222					
2024-08-20			0.119					
2024-08-27			0.112					
2024-09-03			0.182	0.040	0.0002	0.05	0.068	0.0063
2024-09-10	0	0	0.180	0.041	0.0002	0.05	0.072	0.0059
2024-09-17			0.135					
2024-09-23			0.215					
2024-10-01			0.154					
2024-10-08			0.145	0.039	0.0004	0.18	0.055	0.0110
2024-10-16			0.121					
2024-10-22			0.139					
2024-10-29			0.135					
2024-11-05			0.142	0.035	0.0003	0.18	0.030	0.0180
2024-11-12			0.136					
2024-11-19			0.140					
2024-11-26			0.113					
2024-12-03			0.116	0.036	0.0003	0.30	0.024	0.0130
2024-12-10			0.134					
2024-12-18			0.126					
2024-12-23			0.109					
2024-12-30			0.096					
Count	2	2	53	13	13	13	13	13
High	0	0	0.261	0.066	0.0008	0.46	0.072	0.0180
Low	0	0	0.033	0.035	0.0001	0.04	0.021	0.0016
Mean	0	0	0.115	0.044	0.0003	0.15	0.044	0.0072
Lligh Critoric			0.400	1.000	0.0005	0.70	0.044	0.0450
High Criteria	0	0	0.469	1.000	0.0025	0.76	0.841	0.0150
Criteria Ex	0	0	0	0	0	0	0	1
Frequency	0%	0%	0%	0%	0%	0%	0%	8%
10x Criteria Ex	0	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%	0%

Printed on 2/13/2025 Page 28 of 37

DS-5: Stanrock Orient	t Creek Discharge into Mo	ose Lake		
Date	CONDF	FLOW	Head(ft)	pН
	μmho/cm	L/s	ft	
2024-01-05	67.2	1.93	0.1	4.1
2024-04-02	89.0	7.41	0.2	3.7
2024-08-07		0.00	0.0	
2024-11-01	128.3	13.22	0.3	3.3
Count	3	4	4	3
High	128.3	13.22	0.3	4.1
Low	67.2	0.00	0.0	3.3
Mean	94.8	5.64	0.1	3.7
High Criteria				8.5
Low Criteria				6.5
Criteria Ex	0	0	0	3
Frequency	0%	0%	0%	100%
10x Criteria Ex	0	0	0	0
Frequency	0%	0%	0%	0%

Printed on 2/13/2025 Page 29 of 37

DS-6: Stanrock Mod	ose Lake Settling Pond Narrows	, Upstream of DS-1

	Lake Settling Pond Nari	
Date	FLOW L/s	рН
2024-01-02	16.00	7.4
2024-01-02	2.00	7.6
2024-01-16	82.00	7.1
2024-01-23	62.00	8.3
2024-01-30	62.00	7.8
2024-02-06	6.00	7.7
2024-02-13	1.00	6.9
2024-02-20	6.00	8.3
2024-02-27	1.00	7.4
2024-03-05	194.00	6.5
2024-03-12	176.00	8.4
2024-03-19	62.00	6.6
2024-03-26	56.00	8.9 8.1
2024-04-02 2024-04-09	59.00 82.00	7.9
2024-04-09 2024-04-16	164.00	7.9
2024-04-10	103.00	7.6
2024-04-30	203.00	8.1
2024-05-07	62.00	8.5
2024-05-14	62.00	8.3
2024-05-21	6.00	8.1
2024-05-28		
2024-06-04	0.00	
2024-06-11	0.00	
2024-06-18	0.00	
2024-06-25	0.00	
2024-07-02	0.00	
2024-07-09	6.00	8.6
2024-07-16	0.00	
2024-07-23 2024-07-30	0.00 0.00	
2024-08-06	0.00	
2024-08-13	0.00	
2024-08-20	0.00	
2024-08-27	0.00	
2024-09-03	0.00	
2024-09-10	0.00	
2024-09-17	0.00	
2024-09-23	0.00	
2024-10-01	0.00	
2024-10-08	0.00	
2024-10-15	0.00	
2024-10-22 2024-10-29	0.00 0.00	
2024-10 - 29 2024-11-05	0.00	
2024-11-12	0.00	
2024-11-19	6.00	7.5
2024-11-26	16.00	7.6
2024-12-03	6.00	7.8
2024-12-10	29.00	7.8
2024-12-17	45.00	7.4
2024-12-23	29.00	7.3
2024-12-30	203.00	7.4
Count	F0	26
High	52 203.00	8.9
Low	0.00	6.5
Mean	34.75	7.8
High Criteria		8.5
Low Critieria		6.5
Criteria Ex	0	1
Frequency	0%	4%
10x Criteria Ex	0	0
Frequency	0%	0%

Printed on 2/13/2025 Page 30 of 37

FBDST: Field Blank	for D-2							
Date	pH	SO4 mg/L	TSS mg/L	Ra Bq/L	Ba mg/L	Co mg/L	Fe mg/L	Mn mg/L
2024-01-09	5.3	<0.2	<1	< 0.005	0.000	0.0000	<0.01	<0.000
2024-02-06	5.3	<0.2	<1	< 0.005	0.000	< 0.0000	<0.01	0.000
2024-03-05	5.8	<0.2	1	< 0.005	<0.000	< 0.0000	<0.01	< 0.000
2024-04-02	5.5	<0.2	1	0.005	0.001	< 0.0000	<0.01	0.000
2024-05-08	6.0	<0.2	1	< 0.005	0.000	<0.0000	<0.01	0.000
2024-06-18	6.0	<0.2	1	< 0.005	0.000	<0.0000	<0.01	0.000
2024-07-16	5.8	<0.2	<1	< 0.005	0.000	<0.0000	<0.01	0.000
2024-08-06	6.7	<0.2	1	< 0.005	0.000	<0.0000	<0.01	<0.000
2024-09-03	6.4	<0.2	<1	< 0.005	<0.000	<0.0000	<0.01	0.000
2024-10-01	4.5	<0.5	<1	< 0.007	< 0.001	< 0.0001	0.04	< 0.001
2024-11-05	7.2	<0.5	<1	< 0.007	< 0.001	< 0.0001	<0.02	< 0.001
2024-12-03	5.2	<0.5	<1	<0.007	<0.001	<0.0001	0.05	<0.001
Count	12	12	12	12	12	12	12	12
High	7.2	<0.5	1	< 0.007	0.001	< 0.0001	0.05	< 0.001
Low	4.5	<0.2	<1	< 0.005	<0.000	<0.0000	<0.01	< 0.000
Mean	5.8	<0.3	1	0.005	0.000	0.0000	0.01	0.000
Date	U	hard						
	mg/L	mg/L						
2024-01-09	0.0000	<0.1						
2024-02-06	0.0000	<0.1						
2024-03-05	0.0000	<0.1						
2024-04-02	0.0000	<0.1						
2024-05-08	0.0001	0.1						
2024-06-18	0.0000	<0.1						
2024-07-16	0.0001	0.3						
2024-08-06	0.0000	0.3						
2024-09-03	<0.0000	<0.1						
2024-10-01	<0.0010	<0.1						
2024-11-05	<0.0010	<0.1						
2024-12-03	<0.0010	<0.1						
Count	12	12						
High	<0.0010	0.3						
Low	<0.0000	<0.1						
Mean	0.0003	0.1						

Printed on 2/13/2025 Page 31 of 37

FBDST2: Field Blank f	for DS-2	
Date	рН	ACII mg/l
2024-01-03	6.0	2
2024-04-02	5.4	3
2024-07-02	5.0	2
2024-11-12	4.5	9
Count	4	4
High	6.0	9
Low	4.5	2
Mean	5.2	4

Printed on 2/13/2025 Page 32 of 37

ST-1: Stanrock Downst	ream of Dam J CONDF µmho/cm	рН
2024-01-08	86.0	4.5
2024-04-08	35.0	4.2
2024-08-07		
2024-11-18	86.7	4.3
Count	3	3
High	86.7	4.5
Low	35.0	4.2
Mean	69.2	4.3
High Criteria	69.5	8.5
Low Critieria		6.5
Criteria Ex	0	3
Frequency	0%	100%
10x Criteria Ex	0	0
Frequency	0%	0%

Printed on 2/13/2025 Page 33 of 37

Date	age from Dam J at Toe of CONDF	FLOW	pH
	μmho/cm	L/s	
2024-01-08		0.00	
2024-04-08	19.0	0.08	5.0
2024-08-07		0.00	
2024-11-18		0.00	
Count	1	4	1
High	19.0	0.08	5.0
Low	19.0	0.00	5.0
Mean	19.0	0.03	5.0
High Criteria	69.5		8.5
Low Critieria			6.5
Criteria Ex	0	0	1
Frequency	0%	0%	100%
10x Criteria Ex	0	0	0
Frequency	0%	0%	0%

Printed on 2/13/2025 Page 34 of 37

ST-3: Stanrock Down Date	stream of Dam G CONDF µmho/cm	рН
2024-01-08	814.0	3.1
2024-04-08	416.0	3.3
2024-08-07	1450.0	3.2
2024-11-18	954.0	2.9
Count	4	4
High	1450.0	3.3
Low	416.0	2.9
Mean	908.5	3.1
High Criteria Low Critieria	69.5	
Criteria Ex	0	4
Frequency	0%	100%
10x Criteria Ex	0	0
Frequency	0%	0%

Printed on 2/13/2025 Page 35 of 37

Date	CONDF µmho/cm	FLOW L/s	рН
2024-01-05	982.0	0.11	5.3
2024-04-08	761.0	0.16	4.8
2024-08-07	2569.0	0.04	3.7
2024-11-18	1192.0	0.11	4.1
Count	4	4	4
High	2569.0	0.16	5.3
Low	761.0	0.04	3.7
Mean	1376.0	0.11	4.5
High Criteria	69.5		8.5
Low Critieria			6.5
Criteria Ex	0	0	4
Frequency	0%	0%	100%
10x Criteria Ex	0	0	0
Frequency	0%	0%	0%

Printed on 2/13/2025 Page 36 of 37

ST-4: Quirke Lake Delt	a Downstream of Dam I							
Date	ACID mg/L	ALK mg/L	CONDF µmho/cm	DOC mg/L	hard mg/L	pН	SO4 mg/L	Ra Bq/L
2024-02-06	<1	9.00	79.6	4.4	41.6	7.0	28.0	0.030
2024-05-09	<2	7.00	58.0	2.8	34.7	7.3	24.0	0.015
2024-08-06	<1	8.00	92.4	3.1	32.6	7.2	26.0	0.028
2024-11-18	8	12.00	82.1	3.1	34.1	6.3	27.6	0.034
Count	4	4	4	4	4	4	4	4
High	8	12.00	92.4	4.4	41.6	7.3	28.0	0.034
Low	<1	7.00	58.0	2.8	32.6	6.3	24.0	0.015
Mean	3	9.00	78.0	3.4	35.8	7.0	26.4	0.027
High Criteria						8.5	128-429	0.469
Low Critieria						6.5		
Criteria Ex	0	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%	0%
10x Criteria Ex	0	0	0	0	0	0	0	0
Frequency	0%	0%	0%	0%	0%	0%	0%	0%
Date	Ba mg/L	Co	Fe	Mn ma/l	U mg/l			
		mg/L	mg/L	mg/L	mg/L			
2024-02-06	0.051	0.0001	0.03	0.005	0.0012			
2024-05-09	0.041	0.0000	0.02	0.005	0.0011			
2024-08-06	0.040	0.0000	0.01	0.004	0.0010			
2024-11-18	0.046	<0.0001	0.09	0.005	0.0010			
Count	4	4	4	4	4			
High	0.051	<0.0001	0.09	0.005	0.0012			
Low	0.040	0.0000	0.01	0.004	0.0010			
Mean	0.044	0.0001	0.04	0.005	0.0011			
High Critieria	1.000	0.0005	0.76	0.841	0.0150			
Criteria Ex	0	0	0	0	0			
Frequency	0%	0%	0%	0%	0%			
10x Criteria Ex	0	0	0	0	0			
Frequency	0%	0%	0%	0%	0%			

Printed on 2/13/2025 Page 37 of 37

Summary of Final Effluent Annual Loadings for Compliance Parameters 2024

Annual loadings from the TMA final discharge were calculated using monthly monitoring results (volume and average concentration) aligning with the Metal and Diamond Mining Effluent Regulations (MDMER) loadings methodology. Weekly flows at the final discharges were used to calculate monthly discharge volumes (Litres). Monthly average concentrations were multiplied by monthly volumes to produce monthly loads and monthly loads were summed to estimate annual loadings. Annual loadings at the final discharge point were calculated for radium-226 (Million Becquerels) and TSS (kilograms per year) for each effluent treatment plant and presented in Appendix V.

Site	Final Discharge Location	Total Annual Volume (L)	Annual Radium-226 Loadings (MBq)	Annual TSS Loadings Kg/Year
2024				
Denison TMA-1	D-2	1,179,000,000	116	1871
Denison TMA-2	D-3	334,000,000	44	457
Stanrock	DS-4	999,000,000	80	1648

Denison TMA-1 (D-2) Monthly Loadings Calculations for Compliance Parameters

	DENISON TMA-1 FINAL DISCHARGE (D-2) MONTHLY LOADINGS										
	Volume	Volume	FLOW	TSS	TSS	Ra-226	Ra-266				
Month	(ML)	(L)	(L/s)	(mg/L)	(kg/Yr)	(Bq/L)	(MBq)				
Jan-24	58	58000000	22	1	58	0.023	1.334				
Feb-24	69	69000000	27	2	138	0.029	2.001				
Mar-24	189	189000000	71	2	378	0.150	28.35				
Apr-24	363	363000000	140	2	726	0.154	55.902				
May-24	175	175000000	66	1	175	0.098	17.15				
Jun-24	43	43000000	17	1	43	0.048	2.064				
Jul-24	50	50000000	19	1	50	0.030	1.5				
Aug-24	35	35000000	13	1	35	0.024	0.84				
Sep-24	34	34000000	13	1	34	0.026	0.884				
Oct-24	29	29000000	11	1	29	0.032	0.928				
Nov-24	63	63000000	24	1	63	0.049	3.087				
Dec-24	71	71000000	27	2	142	0.032	2.272				
2024 Loadings		1,179,000,000			1871		116.312				

Flow: Average monthly flow and volume (L) taken from discharge at D-2 Radium-226 and TSS: Average monthly discharge at D-2

Entered data
Calculated data

Denison TMA-2 (D-3) Monthly Loadings Calculations for Compliance Parameters

	DENISON TMA-2 FINAL DISCHARGE (D-3) MONTHLY LOADINGS										
Month	Volume (ML)	Volume	(L)	FLOW (L/s)	TSS (mg/L)	TSS (kg/Yr)	Ra-226 (Bq/L)	Ra-226 (MBq)			
Jan-24	12	12000000		4	< 1	12	0.124	1.488			
Feb-24	11	11000000		5	1	11	0.088	0.968			
Mar-24	123	123000000		46	2	246	0.109	13.407			
Apr-24	75	75000000		29	< 1	75	0.128	9.6			
May-24	30	30000000		11	1	30	0.135	4.05			
Jun-24	7	7000000		3	1	7	0.178	1.246			
Jul-24	11	11000000		3	1	11	0.195	2.145			
Aug-24	0	0		0	0	0	0	0			
Sep-24	0	0		0	0	0	0	0			
Oct-24	1	1000000		3	1	1	0.124	0.124			
Nov-24	27	27000000		10	< 1	27	0.169	4.563			
Dec-24	37	37000000		14	1	37	0.164	6.068			
2024 Load	lings	334,000,000				457		43.659			

Flow: Average monthly flow and volume (L) taken from discharge at D-3

Radium-226 and TSS: Average monthly discharge at D-3

Stanrock (DS-4) Monthly Loadings Calculations for Compliance Parameters

	STANROCK FINAL DISCHARGE (DS-4) MONTHLY LOADINGS									
Month	Volume	Volume	FLOW	TSS	TSS	Ra-226	Ra-226			
WIOTILII	(ML)	(L)	(L/s)	(mg/L)	(kg/Yr)	(Bq/L)	(MBq)			
Jan-24	57	57000000	21	1	57	0.083	4.731			
Feb-24	21	21000000	9	1	21	0.075	1.575			
Mar-24	341	341000000	127	2	682	0.058	19.778			
Apr-24	260	260000000	100	2	520	0.059	15.34			
May-24	71	71000000	27	1	71	0.102	7.242			
Jun-24	14	14000000	5	1	14	0.143	2.002			
Jul-24	13	13000000	5	1	13	0.148	1.924			
Aug-24	7	7000000	3	1	7	0.157	1.099			
Sep-24	10	10000000	4	1	10	0.178	1.78			
Oct-24	9	9000000	3	2	18	0.139	1.251			
Nov-24	39	39000000	15	2	78	0.133	5.187			
Dec-24	157	157000000	56	1	157	0.116	18.212			
2024 Load	ings	999,000,000			1648		80.121			

Flow: Average monthly flow and volume (L) taken from discharge at DS-4 Radium-226 and TSS: Average monthly discharge at DS-4

Denison Mines Inc Elliot Lake Division 2024 Denison Tailings Managament Area Environmental Monitoring Results

Denison

BH91 D1A 66.14m

Year	Elevation	Field pH	Sulphate	Acidity	Iron
	(m)		(mg/L)	(mg/L)	(mg/L)
2020	360.74	6.9	780.0	<1	27.30
2021	361.01	No sar	nple collecte	ed (no recha	arge)
2022	360.80	No sar	mple collecte	ed (no recha	arge)
2023	360.00	No sar	mple collecte	ed (no recha	arge)
2024	360.17	No sar	mple collecte	ed (no recha	arge)

BH91 D1B 45.63m

Year	Elevation	Field pH	Sulphate	Acidity	Iron
	(m)		(mg/L)	(mg/L)	(mg/L)
2020	361.24	7.4	680.0	<1	0.02
2021	361.45	No sar	mple collecte	ed (no recha	arge)
2022	360.77	No sar	nple collecte	ed (no recha	arge)
2023	360.49	No sar	nple collecte	ed (no recha	arge)
2024	360.68	No sar	nple collecte	ed (no recha	arge)

BH91 D3A 47.33m

Y	′ear	Elevation (m)	Field pH	Sulphate (mg/L)	Acidity (mg/L)	lron (mg/L)
2	020	361.78	6.6	1600.0	157	151.00
2	021	362.14	6.6	1500.0	129	161.00
2	022	361.63	6.6	1500.0	48	88.60
2	023	361.22	7.4	1600.0	109	157.00
2	024	361.38	6.5	1500.0	94	167.00

BH91 D3B 21.40m

Year	Elevation (m)	Field pH	Sulphate (mg/L)	Acidity (mg/L)	Iron (mg/L)
2020	370.57	6.6	1600.0	207	148.00
2021	370.67	6.5	1500.0	160	145.00
2022	370.38	6.3	1400.0	185	126.00
2023	370.34	6.2	1500.0	128	146.00
2024	370.37	6.2	1500.0	154	144.00

Denison Mines Inc Elliot Lake Division 2024 Denison Tailings Managament Area Environmental Monitoring Results

BH91 D9A 21.79m

Year	Elevation	Field pH	Sulphate	Acidity	Iron
	(m)		(mg/L)	(mg/L)	(mg/L)
2020	395.94	6.6	1600.0	178	199.00
2021	396.06	6.5	1600.0	181	202.00
2022	396.49	6.5	1400.0	147	159.00
2023	396.45	6.5	1400.0	179	170.00
2024	399.85	6.2	1300.0	138	163.00

BH91 DG4B 12.50m

Year	Elevation (m)	Field pH	Sulphate (mg/L)	Acidity (mg/L)	lron (mg/L)
	(***)		(***3,=)	(***3, =)	(***3, =)
2020	358.59	6.3	780.0	2	21.20
2021	358.64	6.6	730.0	<1	18.80
2022	358.64	6.3	700.0	<1	22.10
2023	358.63	6.6	560.0	<2	14.30
2024	358.91	6.5	550.0	<1	11.00

Denison Mines Inc Elliot Lake Division 2024 Stanrock Tailings Managament Area Environmental Monitoring Results

BH91 SG1A 5.49 m

Year	Elevation (m)	Field pH	Sulphate (mg/L)	Acidity (mg/L)	lron (mg/L)
2020	207.70	1.1	2200 0	2270	1050.00
2020	387.78	4.1	3200.0	2370	1050.00
2021	387.85	4.2	2800.0	1990	839.00
2022	387.67	4.4	3300.0	2410	703.00
2023	387.50	3.6	2200.0	1550	635.00
2024	387.43	4.4	2600.0	*	859.000

^{*} Analytical error, results not reportable

BH91 SG2A 33.31 m

ı	Year	Elevation	Field pH	Sulphate	Acidity	Iron
		(m)		(mg/L)	(mg/L)	(mg/L)
	2020	400.56	6.4	4500.0	2420	1320.00
	2021	400.88	6.5	4500.0	2659	1540.00
	2022	400.94	6.1	4500.0	2442	1220.00
	2023	400.13	6.2	4600.0	2900	1390.00
	2024	400.07	5.9	4600.0	*	1560.00

^{*} Analytical error, results not reportable

BH91 SG2D 4.39 m

Year	Elevation	Field pH	Sulphate	Acidity	Iron
	(m)		(mg/L)	(mg/L)	(mg/L)
2020	404.82	No sar	nple collecte	ed (no recha	rge)
2021	404.62	No sar	nple collecte	ed (no recha	rge)
2022	404.68	No sar	nple collecte	d (no recha	rge)
2023	404.28	No sar	nple collecte	ed (no recha	rge)
2024	404.27	No sar	nple collecte	ed (no recha	rge)

BH91 SG3A 8.78 m

Year	Elevation	Field pH	Sulphate	Acidity	Iron		
	(m)		(mg/L)	(mg/L)	(mg/L)		
2020	399.43	No sample collected (no recharge)					
2021	399.40	No sample collected (no recharge)					
2022	399.23	No sar	mple collecte	ed (no recha	ırge)		
2023	399.39	No sample collected (no recharge)					
2024	399.17	No sar	mple collecte	ed (no recha	ırge)		

Denison Mines Inc Elliot Lake Division 2024 Stanrock Tailings Managament Area Environmental Monitoring Results

BH91 SG3B 5.85 m

Year	Elevation	Field pH	Sulphate	Acidity	Iron		
	(m)		(mg/L)	(mg/L)	(mg/L)		
2020	399.59	No sample collected (no recharge)					
2021	399.56	No sample collected (no recharge)					
2022	399.71	No sample collected (no recharge)					
2023	399.36	No sample collected (no recharge)					
2024	399.01	No sar	nple collecte	ed (no recha	rge)		

BH98 15A 7.86 m

Year	Elevation	Field pH	Sulphate	Acidity	Iron
	(m)		(mg/L)	(mg/L)	(mg/L)
2020	392.24	5.9	2800.0	1170	718.00
2021	392.24	6.1	2600.0	1040	489.00
2022	392.21	5.9	2700.0	1278	656.00
2023	392.24	5.9	2300.0	1000	496.00
2024	392.24	5.7	2200.0	829	412.00

BH98 16A 5.49 m

	Year	Elevation	Field pH	Sulphate	Acidity	Iron
		(m)		(mg/L)	(mg/L)	(mg/L)
ľ	2020	395.68	5.7	3700.0	2050	1220.00
	2021	395.90	5.8	3700.0	1960	980.00
	2022	395.92	5.6	3800.0	2570	1340.00
	2023	396.25	5.7	3400.0	1930	996.00
l	2024	395.44	5.7	3500.0	*	1090.00

^{*} Analytical error, results not reportable

PN ST3 P3 5.94 m

Year	Elevation (m)	Field pH	Sulphate (mg/L)	Acidity (mg/L)	lron (mg/L)
2020	404.32	5.8	3200.0	1930	979.00
2021	404.50	5.7	160.0	1960	1100.00
2022	404.40	5.6	3600.0	2090	1030.00
2023	404.04	5.2	3700.0	2540	1120.00
2024	403.77	4.3	4800.0	2140	1268.00

Denison Mines Inc Elliot Lake Division 2024 Stanrock Tailings Managament Area Environmental Monitoring Results

PN ST3 P5 2.64 m

Ye	ear	Elevation	Field pH	Sulphate	Acidity	Iron
		(m)		(mg/L)	(mg/L)	(mg/L)
20	20	404.33	3.3	3400.0	2050	996.00
20)21	404.42	3.4	3000.0	1770	716.00
20)22	404.30	3.3	2700.0	1770	422.00
20)23	404.02	3.5	2800.0	2000	746.00
20)24	403.65	3.3	3100.0	insufficien	t volume

PN ST3 P6 11.58 m

Year	Elevation	Field pH	Sulphate	Acidity	Iron
	(m)		(mg/L)	(mg/L)	(mg/L)
2020	404.25	5.9	7100.0	4690	2670.00
2021	404.43	6.0	6200.0	4570	2550.00
2022	404.41	5.8	5800.0	4270	2470.00
2023	403.91	5.9	5700.0	5000	2230.00
2024	403.79	5.4	6400.0	4060	2440.00

PN ST3 P8 20.91 m

Year	Elevation (m)	Field pH	Sulphate (mg/L)	Acidity (mg/L)	lron (mg/L)
2020	402.37	5.3	9500.0	7780	4770.00
2021	402.60	5.5	14000.0	7180	4210.00
2022	402.31	4.9	8300.0	6502	3290.00
2023	401.99	4.6	7800.0	7000	3160.00
2024	402.22	3.8	7900.0	5560	3260.00

B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Daphnia magna EPS 1/RM/14 Page 1 of 2

Work Order: 255079 Sample Number: 82817

CAMDI	\mathbf{r}	IDENTIFICATION	
SAVIE	1 1	HIJEAN LIETUALIUM	

Company: Denison Mines Inc. Sampling Date: 2024-06-18 Location: Elliot Lake ON Sampling Time: 09:25 D-2 - 20240618 Date Received: Substance: 2024-06-19 Sampling Method: Time Received: 09:05 Grab Sampled By: L. Cormier, F. Paquette Temperature at Receipt: 27 °C Sample Description: Clear, yelllow. Date Tested: 2024-06-19

Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna.

Environment Canada EPS 1/RM/14 (Second Edition, December 2000, with February 2016

amendments).

48-HOUR TEST RESULTS								
Substance	Substance Effect Value							
Control	Mean Immobility	0.0 %						
	Mean Mortality	0.0 %						
100%	Mean Immobility	0.0 %						
	Mean Mortality	0.0 %						

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Species :Daphnia magnaTime to First Brood :9.3 daysOrganism Batch :Dm24-11Average Brood Size :28.8

Culture Mortality: 1.7% (previous 7 days)

TEST CONDITIONS

Sample Treatment :NoneNumber of Replicates :3pH Adjustment :NoneOrganisms per Replicate :10Pre-aeration Rate :~30 mL/min/LOrganisms per Test Level :30

Duration of Pre-Aeration: 0 minutes Organism Loading Rate: 15.0 mL/organism

Test Aeration: None Impaired Control Organisms: 0.0% Hardness Adjustment: None Test Method Deviation(s): None

REFERENCE TOXICANT DATA

Toxicant: Sodium Chloride

Date Tested: 2024-06-18 LC50: 6.2 g/L Organism Batch: Dm24-11 95% Confidence Limits: 6.0 - 6.4 g/LJN, GR Historical Mean LC50: 6.4 g/LAnalyst(s): Statistical Method: Spearman-Kärber Warning Limits (\pm 2SD): 5.9 - 6.8 g/L

COMMENTS

• All test validity criteria as specified in the test method were satisfied.

Tomm Kr.

Emma Kunert I am approving this document 2024-06-26 14:15-04:00

Approved By:

Project Manager

Daphnia magna EPS 1/RM/14 Page 2 of 2

Work Order: 255079 Sample Number: 82817

TEST DATA

	Initial	Chemist	ry (100%) :	рН 7.5	Dissolved O ₂ (mg/L) 7.7	Conductivity (µmhos/cm) 482	Temperature (°C)	O ₂ Saturation (%)* 88	Hardness (as CaCO ₃) 250 mg/L
						-	-		
Date & Time : Analyst(s) :	2024-06-19 FM	12:20)		0 HOURS				
Concentration (%)	Replicate	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation*	Hardness
100	A	0	0	7.5	7.7	482	20	88	250
100	В	0	0	7.5	7.7	482	20	88	250
100	C	0	0	7.5	7.7	482	20	88	250
Control	A	0	0	8.1	8.6	436	22	100	140
Control	В	0	0	8.1	8.6	436	22	100	140
Control	C	0	0	8.1	8.6	436	22	100	140
Notes:									
				2	24 HOURS				
Date & Time : Analyst(s) :	2024-06-20 FM	11:45	5						
Concentration (%)	Replicate	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature		
100	A	_	0	_	_	_	20		
100	В	_	0	_	_	_	20		
100	C	-	0	-	_	_	20		
Control	A	_	0	_	_	_	20		
Control	В	_	0	_	_	_	20		
Control	C	_	0	-	_	_	20		
Notes:									
				4	48 HOURS				
Date & Time : Analyst(s) :	2024-06-21 GR (JW)	12:30)						
Concentration (%)	Replicate	Dead	Immobile	pН		Conductivity			
100	A	0	0	7.9	8.3	484	21		
100	В	0	0	7.9	8.3	483	21		
100	C	0	0	7.9	8.3	483	21		
Control	A	0	0	8.3	8.3	440	21		
Control	В	0	0	8.3	8.3	441	21		
Control	C	0	0	8.2	8.2	440	21		
Notes:									

Number immobile does not include number dead.

Test Data Reviewed By: _____JL

Date: 2024-06-26

[&]quot;_" = not measured/not required

^{*} adjusted for temperature and barometric pressure

B-11 Nicholas Beaver Road Puslinch, ON N0B 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 Page 1 of 2

Work Order: 255079 Sample Number: 82817

	_		
CAMPI	F	IDENTIFICATION	

Denison Mines Inc. Company: Sampling Date: 2024-06-18 Location: Elliot Lake ON Sampling Time: 09:25 Substance: D-2 - 20240618 Date Received: 2024-06-19 Sampling Method: Time Received: 09:05 Grab L. Cormier, F. Paquette Temperature at Receipt: 27 °C Sampled By: Sample Description: Clear, yelllow. Date Tested: 2024-06-20

Test Method(s): Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout.

Environment Canada, EPS 1/RM/13 (2nd Edition, December 2000, with May 2007, February 2016,

and December 2023 amendments).

96-HOUR TEST RESULTS					
Substance	Effect	Value			
Control	Mean Impairment	0.0 %			
	Mean Mortality	0.0 %			
100%	Mean Impairment	0.0 %			
	Mean Mortality	0.0 %			

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Test Organism:	Oncorhynchus mykiss	Mean Fork Length:	42.7 mm
Organism Batch:	T24-09	Range of Fork Lengths:	40 - 45 mm
Control Sample Size :	10	Mean Wet Weight:	0.7 g
Cumulative stock mortality rate:	0% (previous 7 days)	Organism Loading Rate:	0.4 g/L
0 1 1 1 1	0 (, , , , , , , , ,)		

Control organisms showing stress: 0 (at test completion)

TEST CONDITIONS

Test Type:	Single concentration	Number of Replicates:	1
Sample pH Adjustment:	None	Organisms Per Replicate:	10
Sample Pre-aeration/Aeration Rate:	$6.5 \pm 1 \text{ mL/min/L}$	Organisms Per Test Level:	10
Duration of Sample Pre-Aeration:	30 minutes	Volume of Sample:	20 L
Control Pre-aeration/Aeration Rate:	6.5 ± 1 mL/L/min	Volume of Control:	19 L
Duration of Control Pre-aeration:	30 minutes	Test Method Deviation(s):	None

REFERENCE TOXICANT DATA

i oxicant :	Potassium Chioride	
Organism Batch:	T24-09	LC50:
Date Tested:	2024-06-03	95% Con

COMMENTS

Toma for

Emma Kunert I am approving this document 2024-06-26 14:29-04:00

3560 mg/L

Approved By:

Project Manager

[•]All test validity criteria as specified in the test method were satisfied.

Work Order: 255079 Sample Number: 82817

Rainbow Trout EPS 1/RM/13 Page 2 of 2

TEST DATA

	pН	Dissolved O ₂ (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	O ₂ Saturation (%) ³
Initial Water Chemistry (100%):	7.6	7.9	488	15	82
After 30 min pre-aeration:	7.6	8.4	491	15	91

0 HOURS								
Date & Time Analyst(s):	2024-06-20 NWP (PG)	9:40						
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation ³	
100%	0	0	7.6	8.4	491	15	91	
Control	0	0	8.2	9.8	721	14	100	
Notes:								

Notes:

24 HOURS						
Date & Time	2024-06-21	8:50				
Analyst(s):	PG					
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature
100%	0	0	_	_	_	15
Control	0	0	_	_	_	15
Matan.						

Notes:

48 HOURS						
Date & Time	2024-06-22	9:00				
Analyst(s):	JGR					
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature
100%	0	0		_	-	16
Control	0	0	_	_	-	16
[atan.						

Notes:

72 HOURS						
Date & Time	2024-06-23	9:05				
Analyst(s):	JGR					
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature
100%	0	0	-	_	_	15
Control	0	0	_	_	-	15
-						

Notes:

96 HOURS						
Date & Time Analyst(s):	2024-06-24 AJS	10:15				
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature
100%	0	0	7.7	8.9	499	15
Control	0	0	8.3	9.3	704	15

Notes:

Number impaired does not include number dead.

³ adjusted for temperature and barometric pressure

Test Data Reviewed By: JL

Date: 2024-06-25

[&]quot;_" = not measured/not required

B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Daphnia magna EPS 1/RM/14 Page 1 of 2

Work Order: 255079 Sample Number: 82818

SAMPI	\mathbf{r}			TION
SAVIE	4 P 4	/r/N I	TIL A	11()

Company: Denison Mines Inc. Sampling Date: 2024-06-18 Location: Elliot Lake ON Sampling Time: 10:30 DS-4 - 20240618 Date Received: Substance: 2024-06-19 Sampling Method: Time Received: 09:05 Grab Sampled By: L. Cormier, F. Paquette Temperature at Receipt: 27 °C Sample Description: Clear, colourless. Date Tested: 2024-06-19

Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna.

Environment Canada EPS 1/RM/14 (Second Edition, December 2000, with February 2016

amendments).

48-HOUR TEST RESULTS					
Substance	Effect	Value			
Control	Mean Immobility	0.0 %			
	Mean Mortality	0.0 %			
100%	Mean Immobility	0.0 %			
	Mean Mortality	0.0 %			

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Species :Daphnia magnaTime to First Brood :9.3 daysOrganism Batch :Dm24-11Average Brood Size :28.8

Culture Mortality: 1.7% (previous 7 days)

TEST CONDITIONS

Sample Treatment :NoneNumber of Replicates :3pH Adjustment :NoneOrganisms per Replicate :10Pre-aeration Rate :~30 mL/min/LOrganisms per Test Level :30

Duration of Pre-Aeration: 0 minutes Organism Loading Rate: 15.0 mL/organism

Test Aeration: None Impaired Control Organisms: 0.0% Hardness Adjustment: None Test Method Deviation(s): None

REFERENCE TOXICANT DATA

Toxicant: Sodium Chloride

Date Tested: 2024-06-18 LC50: 6.2 g/L Dm24-11 Organism Batch: 95% Confidence Limits: 6.0 - 6.4 g/LAnalyst(s): JN, GR Historical Mean LC50: 6.4 g/LStatistical Method: Spearman-Kärber Warning Limits (\pm 2SD): 5.9 - 6.8 g/L

COMMENTS

• All test validity criteria as specified in the test method were satisfied.

Tomm King

Emma Kunert I am approving this document 2024-06-26 14:31-04:00

Approved By:

Project Manager

Daphnia magna EPS 1/RM/14 Page 2 of 2

Work Order: 255079 Sample Number: 82818

TEST DATA

	Initial	Chemist	ry (100%) :	рН 7.2	Dissolved O ₂ (mg/L) 7.8	Conductivity (µmhos/cm) 526	Temperature (°C) 20	O ₂ Saturation (%)* 90	Hardness (as CaCO ₃) 300 mg/L
		Chemist							300 mg/L
Date & Time : Analyst(s) :	2024-06-19 FM	12:30)		0 HOURS				
Concentration (%)	Replicate	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation*	Hardness
100	A	0	0	7.2	7.8	526	20	90	300
100	В	0	0	7.2	7.8	526	20	90	300
100	C	0	0	7.2	7.8	526	20	90	300
Control	A	0	0	8.1	8.6	436	22	100	140
Control	В	0	0	8.1	8.6	436	22	100	140
Control	C	0	0	8.1	8.6	436	22	100	140
Notes:									
					24 HOURS				
Date & Time : Analyst(s) :	2024-06-20 FM	11:50)						
Concentration (%)	Replicate	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature		
100	A	_	0	_	_	_	20		
100	В	-	0	-	_	_	20		
100	C	-	0	-	_	_	20		
Control	A	_	0	_	_	_	20		
Control	В	_	0	_	_	_	20		
Control	C	_	0	_		-	20		
Notes:									
				4	48 HOURS				
Date & Time : Analyst(s) :	2024-06-21 GR (JW)	12:45	5						
Concentration (%)	Replicate	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature		
100	A	0	0	7.6	8.3	528	22		
100	В	0	0	7.6	8.3	528	22		
100	C	0	0	7.7	8.4	527	22		
Control	A	0	0	8.2	8.3	440	22		
Control	В	0	0	8.3	8.3	440	22		
Control	C	0	0	8.2	8.3	439	22		
Notes:									

Number immobile does not include number dead.

Test Data Reviewed By: _____JL

Date: 2024-06-26

[&]quot;_" = not measured/not required

^{*} adjusted for temperature and barometric pressure

B-11 Nicholas Beaver Road Puslinch, ON N0B 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 Page 1 of 2

Work Order: 255079 Sample Number: 82818

	_		
CAMPI	F	IDENTIFICATION	

Company: Denison Mines Inc. Sampling Date: 2024-06-18 Location: Elliot Lake ON Sampling Time: 10:30 Substance: DS-4 - 20240618 Date Received: 2024-06-19 Sampling Method: Time Received: 09:05 Grab L. Cormier, F. Paquette Temperature at Receipt: 27 °C Sampled By: Sample Description: Clear, colourless. Date Tested: 2024-06-20

Test Method(s): Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout.

Environment Canada, EPS 1/RM/13 (2nd Edition, December 2000, with May 2007, February 2016,

and December 2023 amendments).

96-HOUR TEST RESULTS					
Substance	Effect	Value			
Control	Mean Impairment	0.0 %			
	Mean Mortality	0.0 %			
100%	Mean Impairment	0.0 %			
	Mean Mortality	0.0 %			

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Test Organism:	Oncorhynchus mykiss	Mean Fork Length:	43.0 mm
Organism Batch:	T24-09	Range of Fork Lengths:	41 - 45 mm
Control Sample Size:	10	Mean Wet Weight:	0.7 g
Cumulative stock mortality rate:	0% (previous 7 days)	Organism Loading Rate:	0.4 g/L
0 1 1 1 1	0 (, , , , , , , , , , , ,)		

Control organisms showing stress: 0 (at test completion)

TEST CONDITIONS

Test Type:	Single concentration	Number of Replicates:	1
Sample pH Adjustment:	None	Organisms Per Replicate:	10
Sample Pre-aeration/Aeration Rate:	$6.5 \pm 1 \text{ mL/min/L}$	Organisms Per Test Level:	10
Duration of Sample Pre-Aeration:	30 minutes	Volume of Sample:	18 L
Control Pre-aeration/Aeration Rate:	$6.5 \pm 1 \text{ mL/L/min}$	Volume of Control:	17 L
Duration of Control Pre-aeration:	30 minutes	Test Method Deviation(s):	None

REFERENCE TOXICANT DATA

Toxicant:	Potassium Chloride
Organism Batch:	T24-09

COMMENTS

Tomm Knf

Emma Kunert I am approving this document 2024-06-26 14:32-04:00

Approved By:

Project Manager

[•]All test validity criteria as specified in the test method were satisfied.

Work Order: 255079 Sample Number: 82818

Rainbow Trout EPS 1/RM/13 Page 2 of 2

TEST DATA

	pН	Dissolved O ₂ (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	O ₂ Saturation (%) ³
Initial Water Chemistry (100%):	7.4	8.2	534	15	86
After 30 min pre-aeration:	7.4	8.9	536	15	93

0 HOURS							
Date & Time Analyst(s):	2024-06-20 NWP (PG)	9:15					
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation ³
100%	0	0	7.4	8.9	536	15	93
Control	0	0	8.2	9.8	721	14	100
Notes:							

Notes:

			24 H	OURS		
Date & Time	2024-06-21	8:40				
Analyst(s):	PG					
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature
00%	0	0	_	_	_	15
Control	0	0	_	_	_	15
Notes:						

48 HOURS

Date & Time Analyst(s):	2024-06-22 JGR	9:00				
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature
100%	0	0	_	_	_	16
Control	0	0	-	_	_	16

Notes:

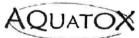
			72 H	OURS		
Date & Time	2024-06-23	9:05				
Analyst(s):	JGR					
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature
100%	0	0	_	_	_	15
Control	0	0	_	_	_	15

TA T		
IN	otes	٠

			96 H	OURS		
Date & Time Analyst(s):	2024-06-24 AJS	8:50				
Concentration	Dead	Impaired	pН	Dissolved O_2	Conductivity	Temperature
100%	0	0	7.5	9.1	544	15
Control	0	0	8.3	9.3	701	15

Notes:

Number impaired does not include number dead.


³ adjusted for temperature and barometric pressure

Test Data Reviewed By: JL

Date: 2024-06-25

[&]quot;_" = not measured/not required

CHAIN OF CUSTODY RECORD

AquaTox Work Order No: 255079

Field Sampler Name (cont)	0
Signature: Pagueto. Affiliation:	
Sample Storage (prior to shipping). NA	
Custody Relinquished by: NA	
Date/Time Shipped: Co/18/24	-

Shipping Address:

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road

Puslinch, Ontario Canada N0B 2J0

Voice: (519) 763-4412

Fax: (519) 763-4419

Denison Mines 1 HorneWalk, Suite 200 Elliot Lake, P5A-2A5 (705) 848-9191 x231 Phone: & Laura Courses. Fax: (705) 848-5814 Contact: analytical results e demonstrates com

				l.		nalyses Rec	uested		- T	Sampl	9 Mothad
Date Collected [yyyy-mm-dd] 2074 - 06-18	Time Collected (e.g. 14:30, 24 hr clock)	Sample Name	Aquatox Temp. on Sample Number arrival	Rambow Trout Singil Concentration Rambow Trout I.C.50	Daphnie magna Single Concentration	Daphnia magna LC50 Fathead Minnow Survival & Growth	Ceriodaphinia dubia Survival & Reproduction	Pseudokirchnenelle Subcapitata Growth	Other (please specify below)	a	Method and Volume # of Containers and
624-06-13	[0: 3c>	D-2-20240618 DS-4-20240618	82817 27°C	✓	1		1	4. 8	· Y	-	Volume (eg. 2 x 1L, 3 x 10L, etc.) 1x20L, 3x4L

For Lab Use	TI	.1.2	Ac	v			
Received By:	71	N.		<u> </u>			
Date;	> -E	22	-0	6-1	9		
Time:	C	10	5				
Storage Location							
Storage Temp (*C)							

ase list any special requests or instructions:			
Grab Samples as per p	ail labor		
+ Blodders at 22°C	1000		
30: VBC		2024-0K	79 JW

Suite 122, 704 Mara Street Point Edward, ON N7V1X4 Tel. (519) 339-8787

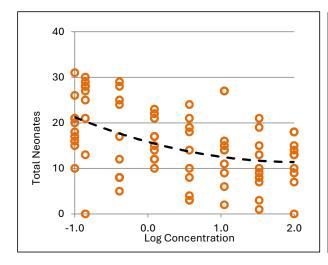
TOXICITY TEST REPORT

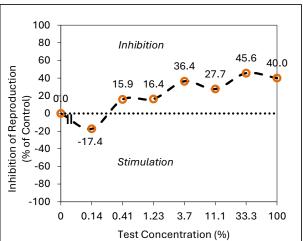
Ceriodaphnia dubia EPS 1/RM/21 Page 1 of 4

Work Order: 255079 Sample Number: 82817

SAMPLE IDENTIFICATION

Company: Denison Mines Inc. Sampling Date: 2024-06-18 Elliot Lake ON 09:25 Location: Sampling Time: Substance: D-2 - 20240618 Date Received: 2024-06-20 Sampling Method: Grab Time Received: 11:15 14 °C Sampled By: L. Courrier, F. Paquette Temperature at Receipt: Sample Description: Clear, yelllow. Date Tested: 2024-06-21


Test Method: Test of Reproduction and Survival using the Cladoceran Ceriodaphnia dubia. Environment


Canada, Conservation and Protection. Ottawa, Ontario. Report EPS 1/RM/21, 2nd ed. (February

2007).

		6-DAY TEST RESULTS	
Effect	Value	95% Confidence Limits	Statistical Method
IC25 (Reproduction)	2.66%	0.34 - 12.2%	Non-Linear Regression (CETIS) ^a
LC50	>100%	_	_

The results reported relate only to the sample tested and as received.

COMMENTS

•All test validity criteria as specified in the test method cited above were satisfied.

Toma for

Emma Kunert I am approving this document 2024-07-19 10:53-04:00

Approved By:

Project Manager

TOXICITY TEST REPORT

Ceriodaphnia dubia EPS 1/RM/21 Page 2 of 4

Work Order: 255079 Sample Number: 82817

TEST ORGANISM

Test Organism: Ceriodaphnia dubia Range of Age (at start of test): <24 h; within 12 h of one another

 Organism Origin :
 Single in-house mass culture
 Mean Brood Organism Mortality : 5% (previous 7 days)

 Test Organism Origin :
 Individual in-house cultures
 Brood Organism Mean Young : 22.2 (first three broods)

 Ephippia in Culture :
 None
 Mean Young per Brood Organism : ≥8 (3rd or subsequent brood)

No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

TEST CONDITIONS

Test Type: Static renewal Control/Dilution Water: CD24120 2
Renewal Method: Transferred to fresh solutions Test Volume per Replicate: 15 mL

Renewal Frequency: ≤ 24 hours Test Vessel: 17 mL polystyrene cylinder

Sample Filtration: None Depth of Test Solution: 4.5 cm Test Aeration: None Organisms per Replicate: 1 pH Adjustment: None Number of Replicates: 10 Hardness Adjustment: None Test Method Deviation(s): None

REFERENCE TOXICANT DATA

Toxicant: LC50: 0.12 mg/LZinc 0.09 - 0.16 mg/L Date Tested: 2024-06-20 95% Confidence Limits: Test Duration: 6 Days Historical Mean LC50: 0.12 mg/LStatistical Method: Trimmed Spearman-Kärber Warning Limits (\pm 2SD): 0.05 - 0.26 mg/L

The reference toxicity test was performed under the same experimental conditions as those used with the test sample.

CUMULATIVE DAILY MORTALITY DATA

		Test Concentration (%)												
Date	Test Day	Control	0.14	0.41	1.23	3.7	11.1	33.3	100					
2024-06-22	1	0	0	0	0	0	0	0	0					
2024-06-23	2	0	0	0	0	0	0	0	0					
2024-06-24	3	0	0	0	0	0	0	0	10					
2024-06-25	4	0	0	0	0	0	0	0	10					
2024-06-26	5	0	0	0	0	0	0	0	10					
2024-06-27	6	10	0	0	0	0	10	0	10					
Total M	Iortality (%)	: 10	0	0	0	0	10	0	10					

REFERENCES

²Reconstituted/Dechlorinated Municipal Drinking Water, and Distilled Water (no additional chemicals)

^a CETIS™, © 2000-2022. v2.1.4.0 x64. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

Ceriodaphnia dubia EPS 1/RM/21 Page 3 of 4

Work Order: 255079 Sample Number: 82817

SURVIVAL AND REPRODUCTION

Test Initiation Date : 2024-06-21
Initiated By : SO
Initiation Time : 12:00
Test Completion Date : 2024-06-27

Control						Rep	licate					Mean	Analyst(s)	3.7%						Rep	licate					Mean Young
Control	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)		3.7 /0	Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0	KP	2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0
2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0	SO	2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0
2024-06-24	3	0	0	0	4	0	0	0	0	2	0	0.6	CS	2024-06-24	3	0	0	0	0	0	6	0	0	0	0	0.6
2024-06-25	4	6	6	7	4	3	2	4	5	0	5	4.2	CS	2024-06-25	4	4	5	2	2	3	0	0	1	3	0	2
2024-06-26	5	7	11	11	8	5	7	6	6	9	10	8	CS	2024-06-26	5	0	6	0	6	7	8	4	2	9	3	4.5
2024-06-27	6	2 :	x 0	13	0	12	9	0	10	10	11	6.7	SO	2024-06-27	6	0	7	8	0	9	7	10	0	12	0	5.3
Total		15	17	31	16	20	18	10	21	21	26	19.5 (±5.9)	Total		4	18	10	8	19	21	14	3	24	3	12.4 (±7.9)

0.140/						Rej	plicate					Mean	11.10/						Rej	plicate					Mean
0.14%	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)	11.1%	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)
2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0	2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0
2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0	2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0
2024-06-24	3	0	0	0	4	4	0	4	0	6	0	1.8	2024-06-24	3	5	2	0	0	0	0	5	3	0	2	1.7
2024-06-25	4	3	2	0	0	0	6	0	0	0	4	1.5	2024-06-25	4	0	0	0	0	3	4	0	0	3	0	1
2024-06-26	5	11	8	6	11	12	10	10	0	10	9	8.7	2024-06-26	5	9	3	0	4	6	10	9	9	5	2	5.7
2024-06-27	6	14	11	7	10	13	11	14	0	14	15	10.9	2024-06-27	6	13	4	2	11	2	0	x 13	4	6	2	5.7
Total		28	21	13	25	29	27	28	0	30	28	22.9 (±9.5)	Total		27	9	2	15	11	14	27	16	14	6	14.1 (±8.1)

0.41%						Rep	olicate					Mean Young	33.3%						Rep	olicate					Mean Young
0.41 /0	Day	1	2	3	4	5	6	7	8	9	10	(±SD)	33.3 70	Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0	2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0
2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0	2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0
2024-06-24	3	0	0	0	0	0	3	0	0	0	2	0.5	2024-06-24	3	0	0	0	0	0	2	0	0	0	0	0.2
2024-06-25	4	3	0	3	0	4	0	6	4	0	0	2	2024-06-25	4	1	3	2	3	0	0	3	3	0	0	1.5
2024-06-26	5	9	3	6	4	4	0	11	11	8	10	6.6	2024-06-26	5	5	5	6	4	0	8	6	8	3	0	4.5
2024-06-27	6	13	9	8	4	0	2	11	14	0	12	7.3	2024-06-27	6	3	2	11	0	3	5	4	10	5	1	4.4
Total		25	12	17	8	8	5	28	29	8	24	16.4 (±9.3)	Total		9	10	19	7	3	15	13	21	8	1	10.6 (±6.5)

1.23%						Rep	plicate					Mean	100%						Rep	licate					Mean
1.23 70	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)	10076	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)
2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0	2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0
2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0	2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0
2024-06-24	3	3	0	0	2	0	0	0	0	0	5	1	2024-06-24	3	2	0	0	0	0	0	0	0 :	x 1	0	0.3
2024-06-25	4	0	6	5	0	3	4	0	3	6	0	2.7	2024-06-25	4	0	2	3	2	2	5	0	0	6	0	2
2024-06-26	5	8	0	6	10	8	5	4	5	0	8	5.4	2024-06-26	5	11	7	7	8	6	3	2	0	0	7	5.1
2024-06-27	6	1	4	6	10	12	12	8	6	9	4	7.2	2024-06-27	6	5	4	5	0	10	1	5	0	7	6	4.3
Total		12	10	17	22	23	21	12	14	15	17	16.3 (±4.5)	Total		18	13	15	10	18	9	7	0	14	13	11.7 (±5.5)

NOTES: •All young produced by a test organism during its fourth and subsequent broods were discarded and not included in the above counts. The presence of two or more neonates in any test chamber, during any given day of the test, constitutes a brood.

•No outlying data points were detected according to Grubbs Test (CETIS)^a.

x = test organism mortality

* = accidental test organism mortality

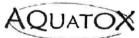
-=4th brood (see 'NOTES')

Test Data Reviewed By : KP
Date : 2024-07-02

Ceriodaphnia dubia EPS 1/RM/21 Page 4 of 4

Work Order: 255079 Sample Number: 82817

		WATI	ER CHEM	ISTRY DA	TA			
	Date :		Day 0 - 1 2024-06-21	Day 1 - 2 2024-06-22	Day 2 - 3 2024-06-23	Day 3 - 4 2024-06-24	Day 4 - 5 2024-06-25	Day 5 - 6 2024-06-26
	Sub-sample Used		1	1	1	2	2	3
Initial	Temperature (°C)		25	26	26	25	26	26
Chemistry	Dissolved O ₂ (mg/L)		8.5	9.0	9.7	9.0	9.1	8.8
(100 %)	рН		7.5	7.3	7.4	7.5	7.5	7.5
,	Conductivity (µmhos/cm)		555	562	560	570	574	585
	Pre-aeration Time (min) ⁵		≤20	≤20	≤20	≤20	≤20	≤20
	Analyst(s)	Initial	SP	TC	TC	TC	TC	TC
	• • • • • • • • • • • • • • • • • • • •	Final	MB	TC	TC	KK	TC	SP
	Temperature (°C)	Initial	24	24	24	24	24	24
		Final	24	24	24	24	24	25
	Dissolved O ₂ (mg/L)	Initial	8.3	7.9	8.1	8.4	8.4	8.0
Control		Final	8.2	8.3	8.4	8.2	7.7	7.6
Control	pН	Initial	8.2	8.0	8.4	8.3	8.3	8.3
		Final	8.3	8.3	8.3	8.3	8.1	8.2
	Conductivity (µmhos/cm)	Initial	410	399	414	416	414	439
	Hardness (mg/L as CaCO	3)	126	_	_	_		_
	Temperature (°C)	Initial	24	24	24	24	24	24
		Final	24	24	24	24	24	25
	Dissolved O ₂ (mg/L)	Initial	8.5	8.1	8.3	8.3	8.0	8.0
0.14 %		Final	8.4	8.6	9.0	8.4	7.7	7.7
	pH	Initial	8.3	8.3	8.4	8.3	8.4	8.3
		Final	8.4	8.4	8.4	8.4	8.2	8.2
	Conductivity (µmhos/cm)	Initial	410	406	417	418	423	434
	Temperature (°C)	Initial	24	24	24	24	24	24
		Final	24	24	24	24	24	25
	Dissolved O ₂ (mg/L)	Initial	8.6	8.5	8.6	8.4	8.0	8.1
3.7 %		Final	8.3	8.3	8.4	8.4	7.6	7.7
	pН	Initial	8.3	8.4	8.5	8.3	8.4	8.2
		Final	8.3	8.4	8.3	8.3	8.1	8.2
	Cond. (µmhos/cm)	Initial	423	409	424	425	427	442
	Temperature (°C)	Initial	24	24	24	24	24	24
		Final	24	24	24	24	24	25
	Dissolved O ₂ (mg/L)	Initial	8.4	8.2	8.1	8.3	8.2	8.0
100 %		Final	8.2	8.4	8.7	8.3	7.5	7.7
100 /0	pH	Initial	7.9	7.8	8.0	7.7	7.8	7.8
		Final	8.1	8.1	8.3	8.0	7.8	7.9
	Conductivity (µmhos/cm)		569	565	563	572	579	587
	Hardness (mg/L as CaCO	3)	246	-	-	_	_	_


[&]quot;_" = not measured/not required

Test Data Reviewed By: KP

Date: 2024-07-02

⁵ ≤100 bubbles/minute

CHAIN OF CUSTODY RECORD

AquaTox Work Order No: 255079

Field Sampler Name (print)	
Signature: Page 1000 Frederice Page 160 Affiliation:	
Sample Storage (prior to shipping). NA	
Custody Relinquished by NA	
Date/Time Shipped: Co/18/24	

Shipping Address:

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road

Puslinch, Ontario Canada N0B 2J0

Voice: (519) 763-4412

Fax: (519) 763-4419

Denison Mines 1 HorneWalk, Suite 200 Elliot Lake, P5A-2A5 (705) 848-9191 x231 Phone: & Laura Courses. Fax: (705) 848-5814 Contact:

		Sample identification								- (41	1180	Menines Com
		A67 - 107	the contract of the contract	e iĝi.	.50 196	Analyses	T	T			Sa	mple Method and Volume
Date Collected (yyyy-mm-dd)	Time Collected (e.g. 14:30, 24 hr clock)	Sample Name	Aguator	Inbow Trout Single Concentration	Rainbow Trout LC50 Dephnie magna Singe Concentration	Daphnia magna LC50 Fathead Minneu	Survival & Growth Ceriodaphnia dubia Survival & Recorded of	Lemna minor Growth	Pseudokirchnenelle Subcapitata Growth	Other (please specify below)	Grab	Composite
2024-06-18	09:25	D-2-20240618	AquaTox Temp. on Sample Number arrival	α. α.	Rail Daph	Daph	Sun	emne	Seuc	ther (or containers and
1024-08-18	10:30	DS-4-20240618	82817 276	1	1		1	3	5)			(eg. 2 x 1L, 3 x 10L etc.)
		1 20240618	82818 27°C	1	1		1	\vdash			Y	1x20L, 3x4L
			STABLE AND LOSSES		1		V		-		*	1x201, 3x4L
						_	+	\dashv	-	_		
			4.574744 (H.)				+	\dashv	_			
					\dashv		+					
					+	-						
			A CONTRACTOR OF THE PARTY OF TH	_	+	-	1					
				_	++							
											+	

For Lab Use	Only	
Received By:	JWIASK	
Date:	2024-06-	19
Time:	9105	and the second
Storage Location		
Storage Temp (*C)		

ase list any special requests or instructions:			
Grab Samples as per par			
Blodders at 22°C	i label.		
1 33°C		2024-06-19	Tr.)

Your samples have been received at Nautilus Environmental's sample reception at Point Edward and have now been issued an unique sample ID numbers

Here are some details of your submission

Client Name: Nautilus Guelph Sample Number: 7940-00124100

Sample Name: 82817

Sample collection date: 2024/06/18

Sample collection time: 10:30

Sample receipt date: 2024/06/20

Sample receipt time: 11:15
Temperature upon arrival: 14 °C
Container/Volume: 3x4L

Analyses requested

Test Code Description CDD: 7-D C. dubia IC25

Entry of your submission is based on information contained on your Chain of Custody. If you have any questions regarding this submission, kindly contact Nautilus Environmental, Point Edward by email using carol@nautilusenvironmental.ca.

704 Mara Street, Suite 122 Point Edward, Ontario, CA N7V 1X4, Phone 519-339-8787

2024-06-20 13:39 Page 1 of 1

Suite 122, 704 Mara Street Point Edward, ON N7V1X4 Tel. (519) 339-8787

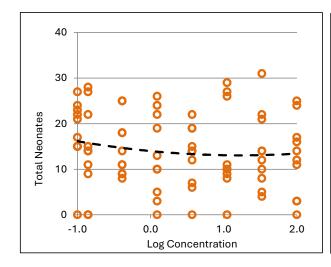
TOXICITY TEST REPORT

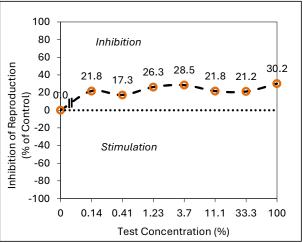
Ceriodaphnia dubia EPS 1/RM/21 Page 1 of 4

Work Order: 255079 Sample Number: 82818

SAMPL	E IDEN	TIFIC	ATION

Denison Mines Inc. Sampling Date: Company: 2024-06-18 Elliot Lake ON Location: Sampling Time: 10:30 Substance: DS-4 - 20240618 Date Received: 2024-06-20 Sampling Method: Grab Time Received: 11:15 14 °C Sampled By: L. Courrier, F. Paquette Temperature at Receipt: Sample Description: Clear, colourless. Date Tested: 2024-06-21


Test Method: Test of Reproduction and Survival using the Cladoceran Ceriodaphnia dubia. Environment


Canada, Conservation and Protection. Ottawa, Ontario. Report EPS 1/RM/21, 2nd ed. (February

2007).

		6-DAY TEST RESULTS	3
Effect	Value	95% Confidence Limits	Statistical Method
IC25 (Reproduction)	>100%	-	Non-Linear Regression (CETIS) ^a
LC50	>100%	_	_

The results reported relate only to the sample tested and as received.

COMMENTS

•All test validity criteria as specified in the test method cited above were satisfied.

I am this c 2024

Emma Kunert I am approving this document 2024-07-19 10:56-04:00

Project Manager

Approved By:

Accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA)

TOXICITY TEST REPORT

Ceriodaphnia dubia EPS 1/RM/21 Page 2 of 4

Work Order: 255079 Sample Number: 82818

TEST ORGANISM

Test Organism: Ceriodaphnia dubia Range of Age (at start of test): <24 h; within 12 h of one another

 Organism Origin :
 Single in-house mass culture
 Mean Brood Organism Mortality :
 20% (previous 7 days)

 Test Organism Origin :
 Individual in-house cultures
 Brood Organism Mean Young :
 20.1 (first three broods)

 Ephippia in Culture :
 None
 Mean Young per Brood Organism : ≥8 (3rd or subsequent brood)

No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

TEST CONDITIONS

Test Type: Static renewal Control/Dilution Water: CD2412(² Renewal Method: Transferred to fresh solutions Test Volume per Replicate: 15 mL

Renewal Frequency: ≤ 24 hours Test Vessel: 17 mL polystyrene cylinder

Sample Filtration: None Depth of Test Solution: 4.5 cm Test Aeration: 1 None Organisms per Replicate: pH Adjustment: None Number of Replicates: 10 Hardness Adjustment: None Test Method Deviation(s): None

REFERENCE TOXICANT DATA

Toxicant: Zinc LC50: 0.12 mg/L0.09 - 0.16 mg/L Date Tested: 2024-06-20 95% Confidence Limits: Test Duration: 0.12 mg/L 6 days Historical Mean LC50: Statistical Method: Trimmed Spearman-Kärber Warning Limits (\pm 2SD): 0.05 - 0.26 mg/L

The reference toxicity test was performed under the same experimental conditions as those used with the test sample.

CUMULATIVE DAILY MORTALITY DATA

				T	est Conce	ntration ((%)		
Date	Test Day	Control	0.14	0.41	1.23	3.7	11.1	33.3	100
2024-06-22	1	0	0	0	0	0	0	0	0
2024-06-23	2	0	0	0	0	0	0	0	0
2024-06-24	3	0	0	0	0	0	0	0	0
2024-06-25	4	0	0	0	10	0	0	0	0
2024-06-26	5	0	0	0	20	0	0	10	10
2024-06-27	6	10	0	0	20	10	10	10	10
Total M	fortality (%)	10	0	0	20	10	10	10	10

REFERENCES

²Reconstituted/Dechlorinated Municipal Drinking Water, and Distilled Water (no additional chemicals)

^a CETIS™, © 2000-2022. v2.1.4.0 x64. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

Ceriodaphnia dubia EPS 1/RM/21 Page 3 of 4

Work Order: 255079 Sample Number: 82818

SURVIVAL AND REPRODUCTION

Test Initiation Date : 2024-06-21
Initiated By : SO
Initiation Time : 12:20
Test Completion Date : 2024-06-27

Control						Rej	olicate					Mean	Analyst(s)	3.7%						Rej	olicate					Mean Young
Control	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)		3.7 /0	Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0	SO	2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0
2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0	KK	2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0
2024-06-24	3	0	0	0	0	0	0	0	0	0	0	0	CS	2024-06-24	3	0	0	0	0	0	0	0	0	0	0	0
2024-06-25	4	4	5	6	2	4	2	3	0	4	4	3.4	KK	2024-06-25	4	5	4	5	0	3	1	3	0	5	4	3
2024-06-26	5	11	9	10	6	8	6	9	0	9	9	7.7	KK	2024-06-26	5	9	9	0	9	2	10	6	0	8	3	5.6
2024-06-27	6	0	10	11	7	11	9	9	0	2	x 9	6.8	SO	2024-06-27	6	0	6	7 2	6	1	8	13	0	1	0	4.2
Total		15	24	27	15	23	17	21	0	15	22	17.9 (±7.6)	Total		14	19	12	15	6	19	22	0	14	7	12.8 (±6.8)

0.14%						Re	plicate					Mean	11.1%						Rep	olicate					Mean
0.1476	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)	11.170	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)
2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0	2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0
2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0	2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0
2024-06-24	3	0	2	2	0	0	0	0	0	0	0	0.4	2024-06-24	3	4	0	0	0	0	0	0	4	0	0	0.8
2024-06-25	4	0	5	4	6	0	4	3	5	4	0	3.1	2024-06-25	4	1	4	4	4	3	0	2	0	4	0	2.2
2024-06-26	5	0	7	9	9	4	10	8	9	7	0	6.3	2024-06-26	5	10	4	6	6	10	0	7	10	0	5	5.8
2024-06-27	6	0	0	0	13	5	13	11	0	0	0	4.2	2024-06-27	6	12	0	x 0	0	13	0	0	15	7	5	5.2
Total		0	14	15	28	9	27	22	14	11	0	14.0 (±9.8)	Total		27	8	10	10	26	0	9	29	11	10	14.0 (±9.7)

0.41%						Rep	olicate					Mean Young	33.3%						Rep	licate					Mean Young
0.41 /0	Day	1	2	3	4	5	6	7	8	9	10	(±SD)	33.3 /0	Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0	2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0
2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0	2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0
2024-06-24	3	3	0	0	0	0	0	0	0	0	0	0.3	2024-06-24	3	0	0	0	0	0	0	0	0	0	0	0
2024-06-25	4	0	3	4	4	6	3	3	5	6	1	3.5	2024-06-25	4	5	0	2	0	1	3	6	3	2	0	2.2
2024-06-26	5	4	7	7	10	8	0	6	6	8	7	6.3	2024-06-26	5	9 :	x 9	1	4	9	5	11	8	0	0	5.6
2024-06-27	6	11	8	0	11	0	6	0	0	11	0	4.7	2024-06-27	6	0	12	11	6	2	0	14	11	3	4	6.3
Total		18	18	11	25	14	9	9	11	25	8	14.8 (±6.4)	Total		14	21	14	10	12	8	31	22	5	4	14.1 (±8.4)

1.23%						Re	plicate					Mean	100%						Rep	olicate					Mean
1.23 /0	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)	100 / 0	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)
2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0	2024-06-22	1	0	0	0	0	0	0	0	0	0	0	0
2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0	2024-06-23	2	0	0	0	0	0	0	0	0	0	0	0
2024-06-24	3	0	0	0	0	0	0	0	0	0	0	0	2024-06-24	3	0	0	0	0	0	0	0	0	0	0	0
2024-06-25	4	3	2	0	5	3	2	5	0	2	0 :	x 2.2	2024-06-25	4	3	1	6	3	4	0	2	0	3	0	2.2
2024-06-26	5	0	8	7	5	7	x 10	9	3	8	0	5.7	2024-06-26	5	0	5	0	8	8	9	10	3	x 10	0	5.3
2024-06-27	6	0	0	12	3	0	12	12	2	12	0	5.3	2024-06-27	6	0	8	11	0	13	7	0	0	11	0	5
Total		3	10	19	13	10	24	26	5	22	0	13.2 (±9.2)	Total		3	14	17	11	25	16	12	3	24	0	12.5 (±8.6)

NOTES: •All young produced by a test organism during its fourth and subsequent broods were discarded and not included in the above counts. The presence of two or more neonates in any test chamber, during any given day of the test, constitutes a brood.

•No outlying data points were detected according to Grubbs Test (CETIS)^a.

x = test organism mortality

* = accidental test organism mortality

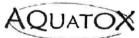
-=4th brood (see 'NOTES')

Test Data Reviewed By : KP
Date : 2024-07-02

Ceriodaphnia dubia EPS 1/RM/21 Page 4 of 4

Work Order: 255079 Sample Number: 82818

		WATI	ER CHEM	ISTRY DA	TA			
	Date :		Day 0 - 1 2024-06-21	Day 1 - 2 2024-06-22	Day 2 - 3 2024-06-23	Day 3 - 4 2024-06-24	Day 4 - 5 2024-06-25	Day 5 - 6 2024-06-26
	Sub-sample Used		1	1	1	2	2	3
Initial	Temperature (°C)		25	26	25	24	26	26
Chemistry	Dissolved O ₂ (mg/L)		8.6	8.8	10.2	9.3	9.3	9.3
(100 %)	рН		7.2	7.2	7.1	7.2	7.3	7.2
,	Conductivity (µmhos/cm)		601	608	607	618	624	634
	Pre-aeration Time (min) ⁵		≤20	≤20	≤20	≤20	≤20	≤20
	Analyst(s)	Initial	SP	TC	TC	TC	TC	TC
	Anarysi(s)	Final	TC	TC	TC	KK	TC	SP
	Temperature (°C)	Initial	24	24	24	24	24	24
		Final	24	24	24	24	24	25
	Dissolved O ₂ (mg/L)	Initial	8.4	7.9	8.1	8.4	8.4	8.4
Control		Final	8.5	8.1	7.7	7.8	7.7	7.6
Control	pH	Initial	8.2	8.0	8.4	8.3	8.3	8.3
		Final	8.4	8.3	8.1	8.2	8.1	8.2
	Conductivity (µmhos/cm)	Initial	410	399	414	416	414	434
	Hardness (mg/L as CaCO	3)	126	-	_	_	-	-
	Temperature (°C)	Initial	24	24	24	24	24	24
		Final	24	24	24	24	24	25
	Dissolved O ₂ (mg/L)	Initial	8.2	7.8	8.2	8.2	8.0	7.9
0.14 %		Final	8.3	8.1	8.1	8.1	7.5	7.2
	pН	Initial	8.2	8.2	8.3	8.3	8.4	8.1
		Final	8.3	8.3	8.2	8.2	8.1	8.2
	Conductivity (µmhos/cm)	Initial	416	406	415	420	423	440
	Temperature (°C)	Initial	24	24	24	24	24	24
		Final	24	24	24	24	24	25
	Dissolved O ₂ (mg/L)	Initial	8.5	7.9	8.2	8.3	8.0	7.9
3.7 %		Final	8.4	8.0	8.2	8.0	7.5	7.6
	pН	Initial	8.3	8.2	8.3	8.3	8.4	8.2
		Final	8.3	8.3	8.2	8.3	8.1	8.2
	Cond. (µmhos/cm)	Initial	419	421	426	428	427	439
	Temperature (°C)	Initial	24	24	24	24	24	24
		Final	24	24	24	24	24	25
	Dissolved O ₂ (mg/L)	Initial	8.6	8.1	8.8	8.2	8.3	8.3
100 0/		Final	8.4	8.0	8.4	8.0	7.5	7.7
100 %	pН	Initial	7.8	7.7	7.6	7.6	7.7	7.6
		Final	8.0	7.8	7.8	7.7	7.6	7.7
	Conductivity (µmhos/cm)		611	611	612	621	627	639
	Hardness (mg/L as CaCO		74	_	_	_	_	_


[&]quot;_" = not measured/not required

Test Data Reviewed By : KP

Date: 2024-07-02

⁵ ≤100 bubbles/minute

CHAIN OF CUSTODY RECORD

AquaTox Work Order No: 255079

Field Sampler Name (print)	
Signature: Page 1000 Frederice Page 160 Affiliation:	
Sample Storage (prior to shipping). NA	
Custody Relinquished by NA	
Date/Time Shipped: Co/18/24	

Shipping Address:

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road

Puslinch, Ontario Canada N0B 2J0

Voice: (519) 763-4412

Fax: (519) 763-4419

Denison Mines 1 HorneWalk, Suite 200 Elliot Lake, P5A-2A5 (705) 848-9191 x231 Phone: & Laura Courses. Fax: (705) 848-5814 Contact:

		Sample identification								- (41	1180	Menines Com
		A67 - 107	the contract of the contract	e iĝi.	.50 196	Analyses	T	T			Sa	mple Method and Volume
Date Collected (yyyy-mm-dd)	Time Collected (e.g. 14:30, 24 hr clock)	Sample Name	Aguator	Inbow Trout Single Concentration	Rainbow Trout LC50 Dephnie magna Singe Concentration	Daphnia magna LC50 Fathead Minneu	Survival & Growth Ceriodaphnia dubia Survival & Recorded of	Lemna minor Growth	Pseudokirchnenelle Subcapitata Growth	Other (please specify below)	Grab	Composite
2024-06-18	09:25	D-2-20240618	AquaTox Temp. on Sample Number arrival	α. α.	Rail Daph	Daph	Sun	emne	Seuc	ther (or containers and
1024-08-18	10:30	DS-4-20240618	82817 276	1	1		1	3	5)			(eg. 2 x 1L, 3 x 10L etc.)
		1 20240618	82818 27°C	1	1		1	\vdash			Y	1x20L, 3x4L
			STABLE AND LOSSES		1		V		-		*	1x201, 3x4L
						_	+	\dashv	-	_		
			4.574744 (H.)				+	\dashv	_			
					\dashv		+					
					+	-						
			A CONTRACTOR OF THE PARTY OF TH	_	+	-	1					
				_	++							
											+	

For Lab Use	Only	
Received By:	JWIASK	
Date:	2024-06-	19
Time:	9105	and the second
Storage Location		
Storage Temp (*C)		

ase list any special requests or instructions:			
Grab Samples as per par			
Blodders at 22°C	i label.		
1 33°C		2024-06-19	Tr.)

Your samples have been received at Nautilus Environmental's sample reception at Point Edward and have now been issued an unique sample ID numbers

Here are some details of your submission

Client Name: Nautilus Guelph Sample Number: 7940-00124101

Sample Name: 82818

Sample collection date: 2024/06/18

Sample collection time: 10:30

Sample receipt date: 2024/06/20

Sample receipt time: 11:15
Temperature upon arrival: 14 °C
Container/Volume: 3x4L

Analyses requested

Test Code Description CDD: 7-D C. dubia IC25

Entry of your submission is based on information contained on your Chain of Custody. If you have any questions regarding this submission, kindly contact Nautilus Environmental, Point Edward by email using carol@nautilusenvironmental.ca.

704 Mara Street, Suite 122 Point Edward, Ontario, CA N7V 1X4, Phone 519-339-8787

2024-06-20 13:40 Page 1 of 1

B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Daphnia magna EPS 1/RM/14 Page 1 of 2

Work Order: 255855 Sample Number: 83987

CANIDI	E IDE	TACTOR
SAMPL	.н. 11)н	 CATION

Sampling Date : Denison Mines Inc. 2024-09-10 Company: Location: Elliot Lake ON Sampling Time: 10:00 D-2-20240910 Date Received: Substance: 2024-09-11 Sampling Method: Time Received: Grab 13:00 F. Paquette Sampled By: Temperature at Receipt: 22 °C Date Tested: 2024-09-13 Sample Description: Clear, colourless

Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna.

Environment Canada EPS 1/RM/14 (Second Edition, December 2000, with February 2016

amendments).

	48-HOUR TEST RESULTS	
Substance	Effect	Value
Control	Mean Immobility	0.0 %
	Mean Mortality	0.0 %
100%	Mean Immobility	0.0 %
	Mean Mortality	0.0 %

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Species :Daphnia magnaTime to First Brood :7.4 daysOrganism Batch :Dm24-17Average Brood Size :31.6

Culture Mortality: 3.0% (previous 7 days)

TEST CONDITIONS

Sample Treatment: None Number of Replicates: 3
pH Adjustment: None Organisms per Replicate: 10
Pre-aeration Rate: ~30 mL/min/L Organisms per Test Level: 30

Duration of Pre-Aeration: 30 minutes Organism Loading Rate: 15.0 mL/organism

Test Aeration : None Impaired Control Organisms : 0.0% Hardness Adjustment : None Test Method Deviation(s) : None

REFERENCE TOXICANT DATA

Toxicant: Sodium Chloride

2024-09-10 LC50: Date Tested: 6.2 g/LOrganism Batch: Dm24-17 95% Confidence Limits: 6.0 - 6.4 g/LGR, FM, CGR Historical Mean LC50: 6.3 g/LAnalyst(s): Statistical Method: Spearman-Kärber Warning Limits (\pm 2SD): 5.9 - 6.7 g/L

COMMENTS

• All test validity criteria as specified in the test method were satisfied.

Tomm for

Emma Kunert I am approving this document 2024-09-24 17:39-04:00

Approved By:

TOXICITY TEST REPORT

Daphnia magna EPS 1/RM/14 Page 2 of 2

Work Order: 255855 Sample Number: 83987

TEST DATA

				pН	Dissolved O ₂ (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	O ₂ Saturation (%)*	Hardness (as CaCO ₃)
	Initial	Chemist	ry (100%):	7.6	8.8	571	21	103	300 mg/L
					0 HOURS				
Date & Time : Analyst(s) :	2024-09-13 PG/GR (JW)	9:30	0		o froe Ro				
Concentration (%)	Replicate	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation*	Hardness
100	A	0	0	7.6	8.7	571	21	102	300
100	В	0	0	7.6	8.7	571	21	102	300
100	C	0	0	7.6	8.7	571	21	102	300
Control	A	0	0	8.3	8.6	458	21	100	140
Control	В	0	0	8.3	8.6	458	21	100	140
Control	C	0	0	8.3	8.6	458	21	100	140
Notes:									
				2	24 HOURS				
Date & Time : Analyst(s) :	2024-09-14 FM	8:45	5						
Concentration (%)	Replicate	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature		
100	A	_	0	_	_	_	20		
100	В	_	0	_	_	_	20		
100	C	_	0	_	_	_	20		
Control	A	_	0	_	_	_	20		
Control	В	_	0	-	_	_	20		
Control	C	_	0	_	-	-	20		
Notes:									
				4	48 HOURS				
Date & Time:	2024-09-15	9:20	0						
Analyst(s):	FM								
Concentration (%)	Replicate	Dead	Immobile	pН		Conductivity			
100	A	0	0	7.9	8.4	574	20		
100	В	0	0	7.9	8.4	575	20		
100	C	0	0	8.0	8.4	572	20		
Control	A	0	0	8.3	8.5	453	20		
Control	В	0	0	8.3	8.4	453	20		
Control	C	0	0	8.3	8.4	453	20		
Notes:									

Number immobile does not include number dead.

Test Data Reviewed By : JJ
Date : 2024-09-19

[&]quot;_" = not measured/not required

^{*} adjusted for temperature and barometric pressure

B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 Page 1 of 2

Work Order: 255855 Sample Number: 83987

C + 3 (D)		TRESIDENCE ADJOIN
SAMP	, HC	IDENTIFICATION

Company: Denison Mines Inc. Sampling Date: 2024-09-10 Location: Elliot Lake ON Sampling Time: 10:00 Substance: D-2-20240910 Date Received: 2024-09-11 Sampling Method: Time Received: 13:00 Grab Sampled By: Temperature at Receipt: 22 °C F. Paquette Clear, colourless Date Tested: Sample Description: 2024-09-12

Test Method(s): Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout.

Environment Canada, EPS 1/RM/13 (2nd Edition, December 2000, with May 2007, February 2016,

and December 2023 amendments).

96-1	HOUR TEST RESULTS		
Substance	Effect	Value	
Control	Mean Impairment	0.0 %	
	Mean Mortality	0.0 %	
100%	Mean Impairment	0.0 %	
	Mean Mortality	0.0 %	

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Test Organism: Oncorhynchus mykiss Mean Fork Length: 43.2 mm T24-19 Range of Fork Lengths: 40 - 48 mm Organism Batch: Control Sample Size: Mean Wet Weight: 0.7 gCumulative stock mortality rate: 0% (previous 7 days) Organism Loading Rate: 0.4 g/LControl organisms showing stress: 0 (at test completion)

TEST CONDITIONS

Test Type: Single concentration Number of Replicates: 1 Sample pH Adjustment: None Organisms Per Replicate: 10 Sample Pre-aeration/Aeration Rate: $6.5 \pm 1 \text{ mL/min/L}$ Organisms Per Test Level: 10 Duration of Sample Pre-Aeration: Volume of Sample: 18 L 30 minutes Control Pre-aeration/Aeration Rate: $6.5 \pm 1 \text{ mL/min/L}$ Volume of Control: 18 L Duration of Control Pre-aeration: 30 minutes Test Method Deviation(s): None

REFERENCE TOXICANT DATA

Toxicant: Potassium Chloride

Organism Batch: T24-19 LC50: 3022 mg/L Date Tested: 2024-09-09 95% Confidence Limits: 2677 - 3412 mg/L Analyst(s): NWP, FM, NM, GR, JGR Historical Mean LC50: 3763 mg/L Statistical Method: Linear Regression (MLE) Warning Limits (\pm 2SD): 2776 - 5100 mg/L

COMMENTS

Toma Kal

Emma Kunert I am approving this document 2024-09-24 17:39-04:00

Approved By : ____

[•]All test validity criteria as specified in the test method were satisfied.

Work Order: 255855 Sample Number: 83987 Rainbow Trout EPS 1/RM/13 Page 2 of 2

TEST DATA

	pН	Dissolved O ₂ (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	O ₂ Saturation (%) ³
Initial Water Chemistry (100%):	7.7	8.8	592	15	90
After 30 min pre-aeration:	7.7	9.1	592	15	95

			0 H	DURS			
Date & Time	2024-09-12	12:55					
Analyst(s):	GR (AJS)						
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation ³
100%	0	0	7.7	9.1	592	15	95
Control	0	0	8.3	9.4	733	15	97
Notes:							

24 HOURS								
Date & Time	2024-09-13	13:25						
Analyst(s):	FM (JGR)							
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature		
00%	0	0	_	_	_	15		
ontrol	0	0	_	_	_	15		
otes:								

			48 H	OURS		
Date & Time	2024-09-14	11:45				
Analyst(s):	JGR					
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature
00%	0	0	_	_	_	15
ontrol	0	0	_	_	_	15
Notes:						

Jics.		

			72 H	OURS		
Date & Time	2024-09-15	11:00				
Analyst(s):	FM (JGR)					
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature
100%	0	0	_	_	_	15
Control	0	0	_	_	_	15
Notes:						

96 HOURS							
Date & Time	2024-09-16	12:40					
Analyst(s):	NWP						
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	
100%	0	0	7.3	9.1	600	15	
Control	0	0	8.0	8.9	707	15	

"_" = not measured/not required

Notes:

Number impaired does not include number dead.

³ adjusted for temperature and barometric pressure

Test Data Reviewed By: ______JJ

Date : 2024-09-19

B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Daphnia magna EPS 1/RM/14 Page 1 of 2

Work Order: 255855 Sample Number: 83988

CANIDI	E IDE	TACTOR
SAMPL	.н. 11)н	 CATION

Sampling Date : Denison Mines Inc. 2024-09-10 Company: Location: Elliot Lake ON Sampling Time: 11:00 DS-4-20240910 Date Received: Substance: 2024-09-11 Sampling Method: Time Received: Grab 13:00 F. Paquette Sampled By: Temperature at Receipt: 22 °C Date Tested: 2024-09-14 Sample Description: Clear, colourless

Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna.

Environment Canada EPS 1/RM/14 (Second Edition, December 2000, with February 2016

amendments).

48-HOUR TEST RESULTS							
Substance	Effect	Value					
Control	Mean Immobility	0.0 %					
	Mean Mortality	0.0 %					
100%	Mean Immobility	0.0 %					
	Mean Mortality	0.0 %					

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Species :Daphnia magnaTime to First Brood :7.4 daysOrganism Batch :Dm24-17Average Brood Size :30.9

Culture Mortality: 3.3% (previous 7 days)

TEST CONDITIONS

Sample Treatment: None Number of Replicates: 3
pH Adjustment: None Organisms per Replicate: 10
Pre-aeration Rate: ~30 mL/min/L Organisms per Test Level: 30

Duration of Pre-Aeration: 30 minutes Organism Loading Rate: 15.0 mL/organism

Test Aeration : None Impaired Control Organisms : 0.0% Hardness Adjustment : None Test Method Deviation(s) : None

REFERENCE TOXICANT DATA

Toxicant: Sodium Chloride

2024-09-10 LC50: Date Tested: 6.2 g/LOrganism Batch: Dm24-17 95% Confidence Limits: 6.0 - 6.4 g/LGR, FM, CGR Historical Mean LC50: 6.3 g/LAnalyst(s): Statistical Method: Spearman-Kärber Warning Limits (\pm 2SD): 5.9 - 6.7 g/L

COMMENTS

• All test validity criteria as specified in the test method were satisfied.

Tomm Kif

Emma Kunert I am approving this document 2024-09-24 17:40-04:00

Approved By:

TOXICITY TEST REPORT

Daphnia magna EPS 1/RM/14 Page 2 of 2

Work Order: 255855 Sample Number: 83988

TEST DATA

				pН	(mg/L)	(µmhos/cm)	Temperature (°C)	O ₂ Saturation (%)*	Hardness (as CaCO ₃)
	Initial	Chemist	ry (100%):	7.3	9.0	588	21	106	330 mg/L
					0 HOURS				
Date & Time : Analyst(s) :	2024-09-14 GR (FM)/FM	9:15	5						
Concentration (%)	Replicate	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation*	Hardness
100	A	0	0	7.7	8.6	587	21	101	330
100	В	0	0	7.7	8.6	587	21	101	330
100	C	0	0	7.7	8.6	587	21	101	330
Control	A	0	0	8.3	8.6	472	21	100	140
Control	В	0	0	8.3	8.6	472	21	100	140
Control	C	0	0	8.3	8.6	472	21	100	140
Notes:									
					24 HOURS				
Date & Time : Analyst(s) :	2024-09-15 GR (FM)	8:15	5						
Concentration (%)	Replicate	Dead	Immobile	pН	Dissolved O ₂	Conductivity	Temperature		
100	A	_	0	_	_	_	20		
100	В	_	0	_	_	_	20		
100	C	_	0	_	_	_	20		
Control	A	_	0	_	_	_	20		
Control	В	_	0	_	_	_	20		
Control	C	-	0	_	_	_	20		
Notes:									
				4	48 HOURS				
Date & Time : Analyst(s) :	2024-09-16 PG	9:20)						
Concentration (%)	Replicate	Dead	Immobile	pН		Conductivity	-		
100	Α	0	0	7.9	8.5	593	21		
100	В	0	0	7.9	8.4	593	21		
100	C	0	0	7.9	8.4	591	21		
Control	A	0	0	8.3	8.4	476	21		
Control	В	0	0	8.3	8.4	475	21		
Control	C	0	0	8.3	8.4	474	21		
Notes:									

Number immobile does not include number dead.

Test Data Reviewed By : JJ
Date : 2024-09-19

[&]quot;_" = not measured/not required

^{*} adjusted for temperature and barometric pressure

B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Rainbow Trout EPS 1/RM/13 Page 1 of 2

Work Order: 255855 Sample Number: 83988

SAMP	L.E.	IDENT	TEICA	TION

Company: Denison Mines Inc. Sampling Date: 2024-09-10 Location: Elliot Lake ON Sampling Time: 11:00 Substance: DS-4-20240910 Date Received: 2024-09-11 Sampling Method: Time Received: 13:00 Grab Sampled By: F. Paquette Temperature at Receipt: 22 °C Clear, colourless Date Tested: Sample Description: 2024-09-12

Test Method(s): Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout.

Environment Canada, EPS 1/RM/13 (2nd Edition, December 2000, with May 2007, February 2016,

and December 2023 amendments).

96-HOUR TEST RESULTS							
Substance	Effect	Value					
Control	Mean Impairment	0.0 %					
	Mean Mortality	0.0 %					
100%	Mean Impairment	0.0 %					
	Mean Mortality	0.0 %					

The results reported relate only to the sample tested and as received.

TEST ORGANISM

Test Organism: Oncorhynchus mykiss Mean Fork Length: 43.2 mm T24-19 Range of Fork Lengths: 40 - 48 mm Organism Batch: Control Sample Size: Mean Wet Weight: 0.7 gCumulative stock mortality rate: 0% (previous 7 days) Organism Loading Rate: 0.4 g/LControl organisms showing stress: 0 (at test completion)

TEST CONDITIONS

Test Type: Single concentration Number of Replicates: 1 Sample pH Adjustment: None Organisms Per Replicate: 10 Sample Pre-aeration/Aeration Rate: $6.5 \pm 1 \text{ mL/min/L}$ Organisms Per Test Level: 10 Duration of Sample Pre-Aeration: Volume of Sample: 18 L 30 minutes Control Pre-aeration/Aeration Rate: $6.5 \pm 1 \text{ mL/min/L}$ Volume of Control: 18 L Duration of Control Pre-aeration: 30 minutes Test Method Deviation(s): None

REFERENCE TOXICANT DATA

Toxicant: Potassium Chloride

Organism Batch: T24-19 LC50: 3022 mg/L Date Tested: 2024-09-09 95% Confidence Limits: 2677 - 3412 mg/L Analyst(s): NWP, FM, NM, GR, JGR Historical Mean LC50: 3763 mg/L Statistical Method: Linear Regression (MLE) Warning Limits (\pm 2SD): 2776 - 5100 mg/L

COMMENTS

Toma Kal

Emma Kunert I am approving this document 2024-09-24 17:41-04:00

Approved By:

[•]All test validity criteria as specified in the test method were satisfied.

Work Order: 255855 Sample Number: 83988 Rainbow Trout EPS 1/RM/13 Page 2 of 2

TEST DATA

	pН	Dissolved O ₂ (mg/L)	Conductivity (µmhos/cm)	Temperature (°C)	O ₂ Saturation (%) ³
Initial Water Chemistry (100%):	7.5	9.0	611	15	92
After 30 min pre-aeration:	7.5	9.2	613	15	95

0 HOURS								
Date & Time	2024-09-12	13:00						
Analyst(s):	GR (AJS)							
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature	O ₂ Saturation ³	
100%	0	0	7.5	9.2	613	15	95	
Control	0	0	8.3	9.4	733	15	97	
Notes:								

24 HOURS								
Date & Time	2024-09-13	13:25						
Analyst(s):	FM (JGR)							
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature		
100%	0	0	_	_	_	15		
Control	0	0	_	_	_	15		
Notes:								

	48 HOURS								
Date & Time	2024-09-14	11:45							
Analyst(s):	JGR								
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature			
0%	0	0		_	-	15			
ontrol	0	0	_	_	_	15			
otes:									

72 HOURS								
Date & Time	2024-09-15	11:00						
Analyst(s):	FM (JGR)							
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature		
00%	0	0	_	_	_	15		
Control	0	0	_	_	_	15		
Notes:								

96 HOURS								
Date & Time Analyst(s):	2024-09-16 NWP	12:40						
Concentration	Dead	Impaired	pН	Dissolved O ₂	Conductivity	Temperature		
00%	0	0	7.2	9.0	618	15		
ontrol	0	0	8.0	8.9	707	15		
otes:								

"_" = not measured/not required

Number impaired does not include number dead.

³ adjusted for temperature and barometric pressure

Test Data Reviewed By : JJ
Date : 2024-09-19

CHAIN OF CUSTODY RECORD

AqueTox Work Order No: 255 855

P.O. Number: 110307	æ
Field Sampler Name (print): FREDERIC PAQUETTE	
Signature: Prédérie Pagnett	***************************************
Ops Affiliation:	
Sample Storage (prior to shipping): NA	
Custody Relinquished by: NA	
Date/Time Shipped: 09 11012024	

Shipping Address: AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road

Puslinch, Ontario Canada N0B 2J0

Voice: (519) 763-4412

Fax: (519) 763-4419

Client:	Denison Mines 1 Horn Walk, Suite 200 Elliot Lake, P5A-2A5	
Phone:	(705) 848-9191	
Fax:	(705) 848-5814	
Contact:	analytical. results @ denison mines.	20

	Sample Identification				Analyses Requested						Sample Method and Volume					
Date Collected (yyyy-mm-dd)	Time Collected (e.g. 14:30, 24 hr clock)	Sample Name	AquaTox Sample Number	Temp. on	Rainbow Trout Single Concentration	Rainbow Trout LC50	Daphnia magna Singte Concentration	Daphnia magna LC50	Fathead Minnow Survival & Growth	Cenodaphnia dubia Survival & Reproduction	Lemna minor Growth	Pseudokirchneriella subcapitata Growth	Other (please specify below)	Grab	Composite	# of Containers and Volume (eg. 2 x 1L, 3 x 10L, etc.)
2024-09-10		D-2-20240910	83987	2200	1		1			1						1x20L, 3x4L
2024-09-07 2024-09-05	11:00	DS-4-20240910	83988	22°C	1		V			V	***********			T		1×206, 3×4L
2024-2940	*										,				***************************************	

	-															
											elmannus vid					

For Lab Use	Only
Received By:	GR/NM
Date:	2024-09-17
Time:	13.00
Storage Location:	
Storage Temp.(°C)	

Please list any * Sample	special r	equests or inst	ructions: to match	date on	somole	label. NM	2024-29-12
					.,,,,,,	1-001, 107-1	
	***************************************		***************************************			and a second	
***************************************		The second second second					
-							

B-11 Nicholas Beaver Road Puslinch, ON N0B 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

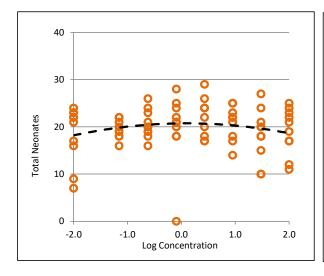
TOXICITY TEST REPORT

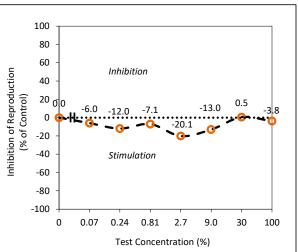
Ceriodaphnia dubia EPS 1/RM/21 Page 1 of 4

Work Order: 256025 Sample Number: 84285

SAMPI	E IDEN	JTITICA	TION
SAVIE	, r ,	V I I F I (. A	

Company: Denison Mines Inc. Sampling Date: 2024-10-01 Location: Elliot Lake ON Sampling Time: 10:45 Substance: D-2-20241001 Date Received: 2024-10-02 Sampling Method: Time Received: Grab 15:45 Sampled By: L. Grant Temperature at Receipt: 18 °C Sample Description: Clear, pale yellow Date Tested: 2024-10-03


Test Method: Test of Reproduction and Survival using the Cladoceran Ceriodaphnia dubia. Environment


Canada, Conservation and Protection. Ottawa, Ontario. Report EPS 1/RM/21, 2nd ed.

(February 2007).

6-DAY TEST RESULTS									
Effect	Value	95% Confidence Limits	Statistical Method						
IC25 (Reproduction)	>100%	-	-						
LC50	>100%	_	_						

The results reported relate only to the sample tested and as received.

COMMENTS

•All test validity criteria as specified in the test method cited above were satisfied.

Tomm for

Emma Kunert I am approving this document 2024-11-07 14:23-05:00

Approved By:

TOXICITY TEST REPORT

Work Order: 256025 Sample Number: 84285 Ceriodaphnia dubia EPS 1/RM/21 Page 2 of 4

TEST ORGANISM

Test Organism: Ceriodaphnia dubia Range of Age (at start of test): 20:50 h - 23:50 h Organism Batch: Cd24-10 Mean Brood Organism Mortality: 0% (previous 7 days) Organism Origin: Single in-house mass culture Brood Organism Mean Young: 21.6 (first three broods) Test Organism Origin: Individual in-house cultures Mean Young per Brood Organism: 13.5 (3rd or subsequent brood)

Ephippia in Culture: None

No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

TEST CONDITIONS

Test Type : Static renewal Control/Dilution Water : Well water ² Renewal Method : Transferred to fresh solutions Test Volume per Replicate : 15 mL

Renewal Frequency: ≤ 24 hours Test Vessel: 20 mL glass vial

Sample Filtration: None Depth of Test Solution: 4 cm Test Aeration: Organisms per Replicate: 1 None 10 pH Adjustment: None Number of Replicates: Test Method Deviation(s): Hardness Adjustment: None None

REFERENCE TOXICANT DATA

Toxicant: Sodium Chloride Analyst(s): AL, EK, AS, KP

 Date Tested :
 2024-09-24
 Test Duration :
 7 days

 IC25 (Reproduction) :
 0.69 g/L
 LC50 :
 1.77 g/L

 95% Confidence Limits :
 0.50 - 0.90 g/L
 95% Confidence Limits :
 1.43 - 2.21 g/L

Statistical Method: Non-linear Regression (CETIS)^a Statistical Method: Linear Regression (MLE) (CETIS)^a

The reference toxicity test was performed under the same experimental conditions as those used with the test sample.

CUMULATIVE DAILY MORTALITY DATA

Test Concentration (%)

				-	lest Conce	entration (70)		
Date	Test Day	Control	0.07	0.24	0.81	2.7	9	30	100
2024-10-04	1	0	0	0	0	0	0	0	0
2024-10-05	2	0	0	0	0	0	0	0	0
2024-10-06	3	0	0	0	10	0	0	0	0
2024-10-07	4	0	0	0	10	0	0	0	0
2024-10-08	5	0	0	0	10	0	0	0	0
2024-10-09	6	0	0	0	10	0	0	0	0
Total Mortality (%):		0	0	0	10	0	0	0	0

REFERENCES

²no additional chemicals

^a CETIS™, © 2000-2022. v2.1.4.0 x64. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

^bGrubbs, F.E., 1969. Procedures for detecting outlying observations in samples. *Technometrics*, 11:1-21.

Work Order: 256025 Sample Number: 84285

Ceriodaphnia dubia EPS 1/RM/21 Page 3 of 4

SURVIVAL AND REPRODUCTION

Test Initiation Date: 2024-10-03 Initiated By: AL (SV) Initiation Time: 10:50 Test Completion Date: 2024-10-09

													4 1 ()													
Control						Re	plicate					Mean Young	Analyst(s)	2.7%						Rep	olicate					Mean Young
	Day	1	2	3	4	5	6	7	8	9	10	(±SD)			Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-10-04	1	0	0	0	0	0	0	0	0	0	0	0	AJS (SV)	2024-10-04	1	0	0	0	0	0	0	0	0	0	0	0
2024-10-05	2	0	0	0	0	0	0	0	0	0	0	0	SV	2024-10-05	2	0	0	0	0	0	0	0	0	0	0	0
2024-10-06	3	4	3	0	4	4	3	4	4	2	2	3	CGR	2024-10-06	3	4	3	5	2	3	2	6	3	3	4	3.5
2024-10-07	4	7	0	7	0	0	8	0	0	0	0	2.2	AL (PG)	2024-10-07	4	8	0	0	0	0	0	0	0	0	0	0.8
2024-10-08	5	0	0	0	9	7	0	9	9	7	7	4.8	JGR (VBC)	2024-10-08	5	0	7	9	9	8	6	11	8	6	9	7.3
2024-10-09	6	11	4	9	10	10	11	10	11	8	0	8.4	FM (SV)	2024-10-09	6	10	7	12	9	13	9	12	13	9	11	10.5
Total		22	7	16	23	21	22	23	24	17	9	18.4 (±6.1)	Total		22	17	26	20	24	17	29	24	18	24	22.1 (±4.0)

0.07%			Mean Young									
0.0770	Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-10-04	1	0	0	0	0	0	0	0	0	0	0	0
2024-10-05	2	0	0	0	0	0	0	0	0	0	0	0
2024-10-06	3	3	3	1	2	4	3	2	3	2	3	2.6
2024-10-07	4	7	0	2	0	0	0	0	0	0	0	0.9
2024-10-08	5	0	8	5	6	5	7	9	9	7	8	6.4
2024-10-09	6	11	8	10	10	10	10	9	10	7	11	9.6
Total		21	19	18	18	19	20	20	22	16	22	19.5 (±1.9)

9%						Rep	olicate					Mean Young
770	Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-10-04	1	0	0	0	0	0	0	0	0	0	0	0
2024-10-05	2	0	0	0	0	0	0	0	0	0	0	0
2024-10-06	3	5	3	2	4	4	3	4	2	3	4	3.4
2024-10-07	4	6	0	0	0	0	9	8	0	0	7	3
2024-10-08	5	0	7	6	8	8	0	0	10	5	0	4.4
2024-10-09	6	12	4	10	10	10	9	13	13	9	10	10
Total		23	14	18	22	22	21	25	25	17	21	20.8 (±3.

0.24%	Replicate												
0.2170	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)	
2024-10-04	1	0	0	0	0	0	0	0	0	0	0	0	
2024-10-05	2	0	0	0	0	0	0	0	0	0	0	0	
2024-10-06	3	3	3	2	4	3	3	3	2	2	4	2.9	
2024-10-07	4	6	0	0	0	0	0	0	0	0	0	0.6	
2024-10-08	5	0	6	8	9	8	8	10	8	7	9	7.3	
2024-10-09	6	10	7	10	13	9	10	11	9	9	10	9.8	
Total		19	16	20	26	20	21	24	19	18	23	20.6 (±3.0	

30%						Rep	olicate					Mean Young
3070	Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-10-04	1	0	0	0	0	0	0	0	0	0	0	0
2024-10-05	2	0	0	0	0	0	0	0	0	0	0	0
2024-10-06	3	4	5	3	2	3	0	3	5	3	4	3.2
2024-10-07	4	0	6	0	0	4	0	6	0	0	0	1.6
2024-10-08	5	6	1	7	0	0	6	0	10	7	9	4.6
2024-10-09	6	8	8	11	8	11	9	11	12	0	11	8.9
Total		18	20	21	10	18	15	20	27	10	24	18.3 (±5.5)

0.81%						Re	plicate					Mean Young	100%						Rep	olicate					Mean Young
	Day	1	2	3	4	5	6	7	8	9	10	(±SD)		Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-10-04	1	0	0	0	0	0	0	0	0	0	0	0	2024-10-04	1	0	0	0	0	0	0	0	0	0	0	0
2024-10-05	2	0	0	0	0	0	0	0	0	0	0	0	2024-10-05	2	0	0	0	0	0	0	0	0	0	0	0
2024-10-06	3	3	0	x 4	3	4	4	4	4	2	3	3.1	2024-10-06	3	3	0	1	2	4	5	4	4	4	4	3.1
2024-10-07	4	0	0	0	8	0	0	10	6	0	0	2.4	2024-10-07	4	0	0	0	0	0	0	6	0	0	0	0.6
2024-10-08	5	6	0	9	0	7	8	0	0	8	9	4.7	2024-10-08	5	5	5	9	9	10	7	0	8	7	8	6.8
2024-10-09	6	9	0	11	10	10	13	14	8	10	10	9.5	2024-10-09	6	9	7	7	11	11	12	11	11	0	7	8.6
Total		18	0^3	24	21	21	25	28	18	20	22	19.7 (±7.6)	Total		17	12	17	22	25	24	21	23	11	19	19.1 (±4.8)

NOTES: •All young produced by a test organism during its fourth and subsequent broods were discarded and not included in the above counts. The presence of two or more neonates in any test chamber, during any given day of the test, constitutes a brood.

-= 4th brood (see 'NOTES')

rest bata rectioned by .	101	
T		

Test Data Paviewed By

Date : 2024-11-01

^{•3} Outlier according to Grubbs Test^b. Outlying data points were not excluded from statistical analysis, since they could not be attributed to error.

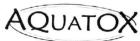
x = test organism mortality

^{* =} accidental test organism mortality

Ceriodaphnia dubia EPS 1/RM/21 Page 4 of 4

Work Order: 256025 Sample Number: 84285

WATER CHEMISTRY DATA									
	Date :		Day 0 - 1 2024-10-03	Day 1 - 2 2024-10-04	Day 2 - 3 2024-10-05	Day 3 - 4 2024-10-06	Day 4 - 5 2024-10-07	Day 5 - 6	
	Sub-sample Used		1	1	1	2	2	3	
T '/' 1	Temperature (°C)		25	24	24	24	24	24	
Initial	Dissolved O ₂ (mg/L)		8.1	8.5	8.7	8.5	8.4	8.7	
Chemistry	Dissolved O ₂ (% Sat.) ⁴		101	107	107	106	105	108	
(100 %)	рН		7.7	7.6	7.7	7.7	7.6	7.5	
	Conductivity (µmhos/cm)		640	636	646	644	638	636	
	Pre-aeration Time (min) ⁵		20	20	20	20	20	20	
	Analyst(s)	Initial	DO (SV)	XD	SSF	MK (SV)	DO (PG)	DO (VBC	
		Final	AL (SV)	SV	CGR	AL (PG)	JGR (VBC)	FM (SV)	
	Temperature (°C)	Initial	24	24	24	24	24	24	
		Final	24	24	24	24	24	24	
	Dissolved O ₂ (% Sat.) ⁴	Initial	100	100	100	100	100	102	
	Dissolved O ₂ (mg/L)	Initial	8.0	8.1	8.1	8.1	8.0	8.3	
Control		Final	7.3	6.2	6.1	6.5	6.9	7.0	
	pН	Initial	8.4	8.4	8.5	8.5	8.3	8.4	
		Final	8.2	8.1	8.0	8.1	8.1	8.1	
	Conductivity (µmhos/cm)	Initial	484	484	509	481	482	478	
	Hardness (mg/L as CaCO	3)	220	-	_	-	-	_	
	Temperature (°C)	Initial	24	24	24	24	24	24	
		Final	24	24	24	24	24	24	
	Dissolved O ₂ (mg/L)	Initial	7.9	8.0	8.1	8.1	7.9	8.1	
0.07 %		Final	7.2	6.2	5.9	6.4	7.1	7.1	
	pН	Initial	8.4	8.3	8.5	8.4	8.3	8.4	
		Final	8.2	8.1	8.0	8.1	8.2	8.2	
	Conductivity (µmhos/cm)	Initial	488	481	511	481	478	477	
	Temperature (°C)	Initial	24	24	24	24	24	24	
		Final	24	24	24	24	24	24	
	Dissolved O ₂ (mg/L)	Initial	7.9	8.0	8.1	8.1	7.8	8.1	
9%		Final	7.2	6.2	5.9	6.4	7.2	7.1	
	pН	Initial	8.4	8.3	8.4	8.3	8.3	8.4	
		Final	8.2	8.1	8.0	8.1	8.2	8.2	
	Conductivity (µmhos/cm)	Initial	501	492	525	497	497	496	
	Temperature (°C)	Initial	24	24	24	24	24	24	
		Final	24	24	24	24	24	24	
	Dissolved O ₂ (mg/L)	Initial	8.0	7.9	8.2	8.2	8.0	8.3	
100 %		Final	7.1	6.3	5.6	6.3	6.9	7.0	
100 70	pН	Initial	7.8	7.9	7.9	7.8	7.8	7.7	
		7.7	7.6	7.4	7.6	7.5	7.7		
	Conductivity (µmhos/cm)	643	644	642	643	638	644		
	Hardness (mg/L as CaCO	3)	290	_	_	_	_	_	


[&]quot;-" = not measured/not required

⁵ ≤100 bubbles/minute

Test Data Reviewed By : KP
Date : 2024-11-01

⁴ adjusted for temperature and barometric pressure

CHAIN OF CUSTODY RECORD

AquaTox Work Order No: 256025

P.O. Number: 150307 P.O. # to follow	
Field Sampler Name (print): Laura Grant	- LI
Signature: Laura Thount	
Affiliation:	
Sample Storage (prior to shipping): NA	
Custody Relinquished by: Laura Thank.	
Date/Time Shipped: October 1, 2024	

Shipping Address: AquaTox Testin

AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, Ontario Canada N0B 2J0

Voice: (519) 763-4412

Fax: (519) 763-4419

Client:	Denison Mines 1 Horn Walk, Suite 200 Elliot Lake, P5A-2A5	· ·
	Laura Grant	
Phone:	(705) 848-9191 705-261-2033	Ŋ-
Fax:	(705) 848-5814	
Contact:	analytical results @ derisonnines	.com

		Sample Identification							Analys	es Rec	uested	- 3			Sa	ample	Method and Volum
Date Collected (yyyy-mm-dd)	Time Collected (e.g. 14:30, 24 hr clock)	Sample Name D-2- 20241001	84285	AquaTox Sample Number		Rainbow Trout Single Concentration	Rainbow Trout LC50	Daphnia magna Single Concentration	Daphnia magna LC50	Fathead Minnow Survival & Growth	Ceriodaphnia dubia Survival & Reproduction	Lemna minor Growth	Pseudokirchneriella subcapitata Growth	Other (please specify below)	_	Composite	# of Containers and Volume (eg. 2 x 1L, 3 x 10L, et
		0 2 20271001	04203	01239	-19	dig.		While	•		✓				$\sqrt{}$		1x20L, 3x4L
				1											1		
															4		
													-		100		Li .
													1			1	
												1		1			
	100										1)				
											er all	2	A.		100		ı.
			ar ^{ee}						100	elle-to	Pa Incomes	Ì			7		
			all a					103891					P				

For Lab Use Only	
Received By:	H3C
Date:	2024-10-02
Time:	15:45
Storage Location:	
Storage Temp.(°C)	

Please list any special	requests or instructions:			
re-sample	for failed Sept. 10.	Control test. Just CD n	eeds resample	e was
4		N		28970

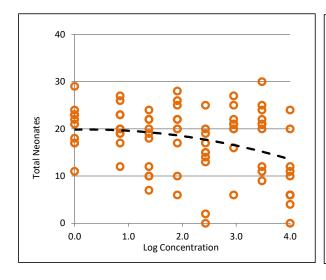
B-11 Nicholas Beaver Road Puslinch, ON N0B 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

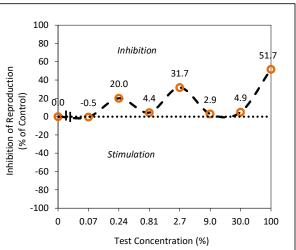
TOXICITY TEST REPORT

Ceriodaphnia dubia EPS 1/RM/21 Page 1 of 4

Work Order: 255855 Sample Number: 83988

SAMPLE IDENTIFICATION


Company: Denison Mines Inc. Sampling Date: 2024-09-10 Location: Elliot Lake ON Sampling Time: 11:00 Substance: DS-4-20240910 Date Received: 2024-09-11 Sampling Method: Grab Time Received: 13:00 Sampled By: F. Paquette Temperature at Receipt: 22 °C Sample Description: Clear, colourless Date Tested: 2024-09-12


Test Method: Test of Reproduction and Survival using the Cladoceran *Ceriodaphnia dubia*. Environment Canada, Conservation and Protection. Ottawa, Ontario. Report EPS 1/RM/21, 2nd ed.

(February 2007).

		6-DAY TEST RESULTS	
Effect	Value	95% Confidence Limits	Statistical Method
IC25 (Reproduction)	57.9%	29.7% - 86.1%	Non-Linear Regression (CETIS) ^a
LC50	79.3%*	0.07% - *	Nonlinear Interpolation (Stephan) ^c

The results reported relate only to the sample tested and as received.

COMMENTS

*The usefulness of any LC50 calculated from this data set is questionable because a concentration-effect relationship has not been demonstrated over a reasonable range (e.g. <37 to >63) of percent dead. A statistically valid upper confidence limit could not be generated. At a confidence level of 95%, the binomial test shows that the LC50 is above 0.07%. An approximate LC50 of 79.3% was obtained by nonlinear interpolation.

•All test validity criteria as specified in the test method cited above were satisfied.

Tomm Knf

Emma Kunert I am approving this document 2024-10-17 12:31-04:00

Approved By:

TOXICITY TEST REPORT

Work Order: 255855 Sample Number: 83988

Ceriodaphnia dubia EPS 1/RM/21 Page 2 of 4

TEST ORGANISM

Test Organism: Ceriodaphnia dubia Range of Age (at start of test): 07:30 h - 19:30 h Organism Batch: Cd24-09 Mean Brood Organism Mortality: 10% (previous 7 days) Organism Origin: Single in-house mass culture Brood Organism Mean Young: 24.6 (first three broods) Mean Young per Brood Organism: 13.1 (3rd or subsequent brood)

Test Organism Origin: Individual in-house cultures

Ephippia in Culture:

No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

TEST CONDITIONS

Static renewal Well water ² Test Type: Control/Dilution Water: Renewal Method: Transferred to fresh solutions Test Volume per Replicate: 15 mL

Renewal Frequency: ≤ 24 hours 20 mL glass vial Test Vessel:

Sample Filtration: 4 cm None Depth of Test Solution: Test Aeration: None Organisms per Replicate: 1 10 pH Adjustment: Number of Replicates: None Hardness Adjustment: None Test Method Deviation(s): None

REFERENCE TOXICANT DATA

Sodium Chloride AL, EK, AS, KP Toxicant: Analyst(s):

2024-09-24 Date Tested: Test Duration: 7 days IC25 (Reproduction): $0.69 \, g/L$ LC50: 1.77 g/L 95% Confidence Limits: 0.50 - 0.90 g/L 1.43 - 2.21 g/L 95% Confidence Limits:

Statistical Method: Statistical Method: Non-linear Regression (CETIS)^a Linear Regression (MLE) (CETIS)^a

Historical Mean IC25: Historical Mean LC50: 1.01 g/L 2.05 g/L Warning Limits (\pm 2SD) : 0.50 - 2.05 g/L Warning Limits (\pm 2SD): 1.39 - 3.03 g/L

The reference toxicity test was performed under the same experimental conditions as those used with the test sample.

CUMULATIVE DAILY MORTALITY DATA

Test Concentration (%) Test Day Control 0.07 Date 0.24 0.81 2.7 9 30 100 2024-09-13 1 0 0 0 0 0 0 0 0 2024-09-14 0 0 0 0 2 0 0 0 0 2024-09-15 3 0 0 0 0 0 0 0 0 2024-09-16 4 0 0 0 0 0 10 0 0 2024-09-17 5 0 0 0 0 10 0 0 50 2024-09-18 6 0 0 30 0 30 10 10 60 Total Mortality (%): 30 10 10 60

REFERENCES

²no additional chemicals

^a CETISTM, © 2000-2022. v2.1.4.0 x64. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

^c Stephan, C. E. 1977. Methods for calculating an LC50. pp 65-84 in: P. L. Mayer and J. L. Hamelink (eds.), Aquatic Toxicology and Hazard Evaluation. Amer. Soc. Testing and Materials, Philadelphia PA. ASTM STP 634.

Ceriodaphnia dubia EPS 1/RM/21 Page 3 of 4

Work Order: 255855 Sample Number: 83988

SURVIVAL AND REPRODUCTION

 $\begin{array}{lll} \mbox{Test Initiation Date}: & 2024-09-12 \\ \mbox{Initiated By}: & \mbox{XD} \\ \mbox{Initiation Time}: & 13:30 \\ \mbox{Test Completion Date}: & 2024-09-18 \\ \end{array}$

Control						Rep	olicate					Mean Young	Analyst(s)	2.7%						Rep	licate					Mean Young
	Day	1	2	3	4	5	6	7	8	9	10	(±SD)			Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-09-13	1	0	0	0	0	0	0	0	0	0	0	0	AL (AS)	2024-09-13	1	0	0	0	0	0	0	0	0	0	0	0
2024-09-14	2	0	0	0	0	0	0	0	0	0	0	0	SSF (AS)	2024-09-14	2	0	0	0	0	0	0	0	0	0	0	0
2024-09-15	3	0	0	0	0	0	4	0	5	5	6	2	SSF (AS)	2024-09-15	3	0	0	0	0	5	2	0	3	4	5	1.9
2024-09-16	4	6	4	4	2	4	0	3	7	2	0	3.2	AL (AS)	2024-09-16	4	4	0	6	2	0	0	4	3	0	0	1.9
2024-09-17	5	12	7	11	6	7	8	8	0	10	9	7.8	NWP	2024-09-17	5	7	0	9	0	10	9	10	9	9	12 x	7.5
2024-09-18	6	11	6	9	10	11	9	0	11	-	8	7.5	AL (AS)	2024-09-18	6	9	0	0	0 x	10	8	0	_	0 2	x 0	2.7
Total		29	17	24	18	22	21	11	23	17	23	20.5 (±4.9)	Total		20	0	15	2	25	19	14	15	13	17 1	4.0 (±7.7)

0.07%						Rep	olicate					Mean Young	9%						Rej	plicate					Mean Young
	Day	1	2	3	4	5	6	7	8	9	10	(±SD)		Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-09-13	1	0	0	0	0	0	0	0	0	0	0	0	2024-09-13	1	0	0	0	0	0	0	0	0	0	0	0
2024-09-14	2	0	0	0	0	0	0	0	0	0	0	0	2024-09-14	2	0	0	0	0	0	0	0	0	0	0	0
2024-09-15	3	0	5	0	1	0	5	0	5	6	6	2.8	2024-09-15	3	0	0	0	0	3	5	0	4	5	6	2.3
2024-09-16	4	5	0	4	4	5	0	4	6	0	0	2.8	2024-09-16	4	5	6	4	4	0	0	3	6	7	0	3.5
2024-09-17	5	7	11	8	9	8	11	8	0	11	11	8.4	2024-09-17	5	9	9	9	10	9	11	3	0	0	10	7
2024-09-18	6	11	10	8	6	6	3	0	12	0	10	6.6	2024-09-18	6	8	10	7	7	9	11	0	10	9	0 x	7.1
Total		23	26	20	20	19	19	12	23	17	27	20.6 (±4.4)	Total		22	25	20	21	21	27	6	20	21	16 1	9.9 (±5.7)

0.24%						Rep	olicate					Mean Young	30%						Rep	licate					Mean Young
	Day	1	2	3	4	5	6	7	8	9	10	(±SD)		Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-09-13	1	0	0	0	0	0	0	0	0	0	0	0	2024-09-13	1	0	0	0	0	0	0	0	0	0	0	0
2024-09-14	2	0	0	0	0	0	0	0	0	0	0	0	2024-09-14	2	0	0	0	0	0	0	0	0	0	0	0
2024-09-15	3	0	4	0	0	0	4	0	4	3	6	2.1	2024-09-15	3	0	3	0	0	0	4	0	3	6	0	1.6
2024-09-16	4	5	0	2	2	4	0	3	4	0	0	2	2024-09-16	4	6	0	5	3	3	0	4	0	0	0	2.1
2024-09-17	5	7	7	8	5	8	8	9	0	7	12	7.1	2024-09-17	5	12	11	9	6	7	9	10	8	10	6	8.8
2024-09-18	6	10	9	0	0	12	10	0 2	x 11	0	x 0 x	5.2	2024-09-18	6	12	7	7	0	10	12	8	0 2	x 8	6	7
Total		22	20	10	7	24	22	12	19	10	18	16.4 (±6.1)	Total		30	21	21	9	20	25	22	11	24	12	19.5 (±6.8)

0.81%						Rep	olicate					Mean Young	100%						Rep	olicate					Mean Young
	Day	1	2	3	4	5	6	7	8	9	10	(±SD)		Day	1	2	3	4	5	6	7	8	9	10	(±SD)
2024-09-13	1	0	0	0	0	0	0	0	0	0	0	0	2024-09-13	3 1	0	0	0	0	0	0	0	0	0	0	0
2024-09-14	2	0	0	0	0	0	0	0	0	0	0	0	2024-09-14	4 2	0	0	0	0	0	0	0	0	0	0	0
2024-09-15	3	0	1	0	0	5	0	0	5	5	4	2	2024-09-1	5 3	0	1	0	0	0	4	0	5	4	2	1.6
2024-09-16	4	5	2	3	2	0	5	3	0	10	0	3	2024-09-10	6 4	3	0	2	2	0 2	x 1	1	9	0	0	1.8
2024-09-17	5	11	9	9	0	9	11	7	7	0	9	7.2	2024-09-1	7 5	7	x 10	2 2	κ 4	0	1 :	ς 5	0	7	10 x	4.6
2024-09-18	6	12	8	5	4	11	6	0	8	11	9	7.4	2024-09-1	8 6	0	9	0	0	0	0	0	10	0 2	0	1.9
Total		28	20	17	6	25	22	10	20	26	22	19.6 (±7.0)	Total		10	20	4	6	0	6	6	24	11	12	9.9 (±7.3)

NOTES: •All young produced by a test organism during its fourth and subsequent broods were discarded and not included in the above counts. The presence of two or more neonates in any test chamber, during any given day of the test, constitutes a brood.

•No outlying data points were detected according to Grubbs Test (CETIS)^a.

Test Data Reviewed By : KP

Date : 2024-10-11

x = test organism mortality

^{* =} accidental test organism mortality

^{-= 4}th brood (see 'NOTES')

Ceriodaphnia dubia EPS 1/RM/21 Page 4 of 4

Work Order: 255855 Sample Number: 83988

		WATE	ER CHEM	ISTRY DA	TA			
	Date:		Day 0 - 1 2024-09-12	Day 1 - 2 2024-09-13	Day 2 - 3 2024-09-14	Day 3 - 4 2024-09-15	Day 4 - 5 2024-09-16	Day 5 - 0 2024-09-1
	Sub-sample Used		1	1	1	2	2	3
T .*4* .1	Temperature (°C)		25	24	24	24	24	24
Initial	Dissolved O ₂ (mg/L)		8.0	8.5	8.4	8.7	8.6	8.9
Chemistry	Dissolved O ₂ (% Sat.) ⁴		100	105	104	108	107	110
(100 %)	pН		7.5	7.6	7.5	7.6	7.5	7.5
	Conductivity (µmhos/cm)		647	652	646	648	650	643
	Pre-aeration Time (min) ⁵		0	20	20	20	20	20
	Analyst(s)	Initial Final	NWP AL (SV)	DO (SV) SSF (AS)	GR (PC) SSF (AS)	EK AL (AS)	DO (AS) NWP	NWP AL (AS
	Temperature (°C)	Initial	24	24	24	24	24	24
	- (-)	Final	24	24	24	24	24	24
	Dissolved O ₂ (% Sat.) ⁴	Initial	100	100	100	102	100	101
	Dissolved O_2 (mg/L)	Initial	8.0	8.1	8.0	8.3	8.1	8.1
Control		Final	6.7	7.1	7.4	7.2	7.3	7.3
Control	pН	Initial	8.4	8.5	8.5	8.5	8.5	8.4
	P	Final	8.1	8.2	8.2	8.3	8.2	8.2
	Conductivity (µmhos/cm)		460	442	456	472	429	476
	Hardness (mg/L as CaCO		210	_	_	_	_	_
	Temperature (°C)	Initial	24	24	24	24	24	24
		Final	24	24	24	24	24	24
	Dissolved O ₂ (mg/L)	Initial	7.8	7.8	8.0	8.1	8.1	8.1
0.07 %		Final	6.8	6.9	7.2	7.2	7.1	7.2
	рН	Initial	8.2	8.3	8.4	8.4	8.3	8.4
	•	Final	8.2	8.2	8.2	8.3	8.2	8.2
	Conductivity (µmhos/cm)	Initial	460	440	459	476	448	476
	Temperature (°C)	Initial	24	24	24	24	24	24
		Final	24	24	24	24	24	24
	Dissolved O ₂ (mg/L)	Initial	7.8	7.9	8.0	8.1	8.1	8.1
9 %		Final	6.7	6.8	7.1	7.0	7.1	7.1
	pН	Initial	8.2	8.3	8.4	8.4	8.3	8.3
		Final	8.1	8.2	8.2	8.3	8.2	8.2
	Conductivity (µmhos/cm)	Initial	482	465	477	490	471	490
	Temperature (°C)	Initial	24	24	24	24	24	24
		Final	24	24	24	24	24	24
	Dissolved O_2 (mg/L)	Initial	7.9	7.9	7.9	8.3	8.0	8.0
100 %		Final	6.6	6.7	7.1	7.1	7.3	7.3
100 /0	pН	Initial	7.6	7.8	7.9	7.7	7.8	7.9
		Final	7.6	7.7	7.7	7.7	7.7	7.7
	Conductivity (µmhos/cm)	Initial	650	649	648	647	649	648

[&]quot;-" = not measured/not required

⁵ ≤100 bubbles/minute

⁴ adjusted for temperature and barometric pressure

CHAIN OF CUSTODY RECORD

AqueTox Work Order No: 255 855

P.O. Number: 110307	æ
Field Sampler Name (print): FREDERIC PAQUETTE	
Signature: Prédérie Pagnett	***************************************
Ops Affiliation:	
Sample Storage (prior to shipping): NA	
Custody Relinquished by: NA	
Date/Time Shipped: 09 11012024	

Shipping Address: AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road

Puslinch, Ontario Canada N0B 2J0

Voice: (519) 763-4412

Fax: (519) 763-4419

Client:	Denison Mines 1 Horn Walk, Suite 200 Elliot Lake, P5A-2A5	
Phone:	(705) 848-9191	
Fax:	(705) 848-5814	
Contact:	analytical. results @ denison mines.	20

		Sample Identification						Analys	es Req	uested		***************************************	***************************************	S	ampl	e Method and Volume
Date Collected (yyyy-mm-dd)	Time Collected (e.g. 14:30, 24 hr clock)	Sample Name	AquaTox Sample Number	Temp. on	Rainbow Trout Single Concentration	Rainbow Trout LC50	Daphnia magna Singte Concentration	Daphnia magna LC50	Fathead Minnow Survival & Growth	Cenodaphnia dubia Survival & Reproduction	Lemna minor Growth	Pseudokirchneriella subcapitata Growth	Other (please specify below)	Grab	Composite	# of Containers and Volume (eg. 2 x 1L, 3 x 10L, etc.)
2024-09-10		D-2-20240910	83987	2200	1		1			1						1x20L, 3x4L
2024-09-07 2024-09-05	11:00	DS-4-20240910	83988	22°C	1		V			V	***********			T		1×206, 3×4L
2024-2940	*										,				***************************************	

	-															
											elmannus vid					

For Lab Use	Only
Received By:	GR/NM
Date:	2024-09-17
Time:	13.00
Storage Location:	
Storage Temp.(°C)	

Please list any * Sample	special r	equests or inst	ructions: to match	date on	somole	label. NM	2024-29-12
					.,,,,,,	1-001, 107-1	
	***************************************		***************************************			and a second	
***************************************		The second second second					